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Skills with a strong desire to learn

• basic knowledge of machine learning techniques and
algorithms, data modeling and evaluation, experi-
ence with machine learning libraries and packages

• cryptography, cryptographic primitives including ho-
momorphic encryption, secure multiparty computa-
tion, garbled circuits, implementations

• programming languages and security, security proto-
col modeling, functional programming, information
flow analysis, type systems, formal verification

• security and privacy properties, differential privacy,
confidentiality

Introduction
Machine learning applications consume vast amounts
of user data (including PII data) to produce analytical
models, which are subsequently used to assist in mak-
ing classification decisions on new data without human
intervention. While machine learning applications are
getting more and more sophisticated, security and pri-
vacy issues in this context have received lesser attention.
In privacy preserving machine learning (PPML), such
a machine-learning classifier (server) should treat user
queries opaquely, and should not learn anything about the
query issued by a client or its resulting response (i.e., the
resulting class). A client should only learn the correct re-
sponse to its query and not learn anything about the model
parameters on the servers. Achieving these goals, simple
as they sound, turns out to be quite difficult and expensive
in practice, and is an active area of research.

Our goal in this project is to explore the landscape of
secure machine learning, including PPML, and build im-
plementations of state of the art verifiable protocols and
solutions that are also fast and efficient. There are many
layers in this quest:

1. At a high level, secure machine learning involves the
specification of a set of desirable security and privacy
properties, from the viewpoint of both clients (end
users of the machine learning service) and servers,
who have the analytical models. Since client data is
used to produce these models, in addition to the clas-
sifier properties highlighted above, the notion of pro-
tecting PII (personally identifiable information) dur-
ing learning is also important. Once these properties
are specified, protocols to achieve these properties
for different machine learning techniques need to be
specified and analyzed for their compliance. At this
level, the lower level cryptographic techniques that
are required to meet the security goals are specified
abstractly, similar to the Dolev-Yao symbolic models
and we need novel programming language and veri-
fication techniques to track and validate information
flow properties, in addition to validating functional
correctness of machine learning goals, across mul-
tiple rounds of interaction between the clients and
servers.

2. These protocols in turn rely on novel and sophisti-
cated cryptographic algorithms, such as homomor-
phic encryption (HE) [5, 4, 7, 6] where computa-
tions can be performed directly on encrypted data
to give an encrypted result, secure multi-party com-
putation (SMC) [10, 8], garbled circuits [6, 7], and
functional encryption (FE) [3]. All of these tech-
niques, specifically HE, are currently impractical for
machine learning. Clever combinations of partial
HE and SMC or GC, interleaved with randomization,
masking, and permutations as shown in these works,
attempt to bridge the gap between security and per-
formance. Through our research in building verified
implementations of cryptographic primitives, proto-
cols and applications [2] we observe that they can be
difficult to implement correctly, and errors and vul-
nerabilities in their code can remain undiscovered for



long periods before they are exploited. Similar to our
work on HACL∗ we plan to explore how to build ver-
ified implementations of these new primitives, which
will necessarily have different verification goals and
functional correctness specifications from the prim-
itives we have studied earlier. In fact, the choice of
the cryptographic solution will be based on the se-
curity guarantees they can offer in the client-server
machine learning setting, as well as a careful analy-
sis of their performance overheads.

3. The lowest layer of this framework is the verified
implementation of the client and server code. This
code is derived from the verified implementations of
the earlier layers and translated into C code using
effective compiler tools. The low-level implemen-
tations preserve the broader security goals from the
higher layers within the machine learning context, as
well as provide memory safety, functional correct-
ness, and resilience to some forms of side channel
attacks. This last layer provides us the performance
guarantees, making verified low-level code for se-
cure machine learning as performant as the fastest
implementations of these techniques This generated
code can be dropped as modules into existing ma-
chine libraries and programming frameworks, for ex-
ample replacing native computations by their homo-
morphically secure computations to assert confiden-
tiality properties intuitively. Additionally, we can
compile the whole protocol into separate client and
server modules to form an end-to-end verified solu-
tion that can run over an insecure network, with these
modules containing all the functionality as well as
security code, and provide strong guarantees, with-
out sacrificing performance.

The glue that holds all these layers is the F∗. F* is
an ML-like functional programming language with a type
system that includes polymorphism, dependent types,
monadic effects, refinement types, and a weakest precon-
dition calculus [1]. The language is aimed at program
verification, and its type system allows the expression of
precise and compact functional correctness and security
property specifications for programs, which can be me-
chanically verified, with the help of an SMT solver. After
verification, and F* program can be compiled to OCaml,
F#, C, or even WebAssembly, and so it can run in a variety
of platforms.

With our initial experience in building a protocol to do
secure classification, we show in [9], that even the act of
comparing two numbers homomorphically, can reveal in-
formation that can be exploited to learn features of an an-
alytical models unintentionally. We believe that this is
a rich area for research, and there are many open prob-
lems, including foundational and definitional ones in un-

derstanding the nature and scope of security and privacy
guarantees for machine learning and their verification. We
believe that these efforts need to be enmeshed with in-
novations in machine learning techniques and algorithms
and can only be realized through a concerted and inte-
grated effort.

As a part of this ongoing effort, we seek brilliant stu-
dents who are interested in machine learning and security,
and are willing to explore verification tools and program-
ming languages techniques to build verified solutions in
what we believe is a fundamental requirement in this area
of secure machine learning, something that has been often
neglected or deemed impractical for performance reasons.
We want to view the approach outlined here as a guideline
to pick interesting sub projects in the field, and are open
to suggestions including ideas on differential privacy and
the use of secure enclaves, as well as new insights and
problems in this framework. We seek both Ph. D students
and postdoctoral students, and students will be expected
to contribute to a clearly defined sub-task, with the goal of
leading to a dossier of publications in top research confer-
ences and contribute to foundational aspects of this field.
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