
Cryptographic protocols: formal and computational proofs

(All documents are allowed; duration: 3h)

February 26, 2020

For the ease of the correctors, please use different sheets for the two parts of the exam.

2 Analyzing Protocols and Implementations (1h30, 1/2 the mark)

A startup called SuperSecure proposes a new cryptographic protocol that smartphone apps can
use to upload and download sensitive data from cloud-based servers. You have been tasked with
analyzing whether this protocol is secure and correctly implementing the protocol in F*.

Protocol. The protocol is between an initiator I (a smartphone app) and a responder R
(a server). I wishes to send a secret, mutually-authenticated request message m to R and R
responds with a secret response message m′ meant only for I. We assume that everyone knows
the public keys of I and R (pk I ,pkR) but only I and R know their own private keys (sk I ,skR).

The protocol uses a variation of the encrypt-then-sign pattern for requests: the initiator I
generates a fresh encryption key ek , encrypts it under the public key of R (pkR), encrypts the
secret message m using ek to obtain a ciphertext c, and then signs c using the initiator’s private
key (skA). The response message m′ is simply encrypted using ek . The request and response
messages are tagged with constants 0 and 1 to distinguish them.

A −→ B : A, penc(ek , pkB), enc(0 ‖m, ek), sign(enc(0 ‖m, ek), skA)
B −→ A : enc(1 ‖m′, ek)

Hence, the protocol uses three cryptographic primitives: public-key encryption (penc, pdec),
public-key signatures (sign, verify), and authenticated symmetric encryption (enc, dec). The
types and functional lemmas (in F* syntax) for these primitives are given in Appendix A.

Security Goals. The two main security goals of the protocol can be stated as follows:
• Confidentiality: Any request message m or response message m′ sent between I and R

should only be known to I and R.
• Authentication: If R accepts a request m from I, then:

– m must be known to I (Sender Knowledge),
– I must have sent m (Sender Authentication),
– R must be the intended recipient of m (Receiver Authentication).

Similarly, if I accepts a response m′ from R, then the three dual properties must hold, in
addition to a new goal that says that m′ must be correlated with m.

– m′ must be known to R (Sender Knowledge),
– R must have sent m′ (Sender Authentication),
– I must be the intended recipient of m′ (Receiver Authentication),
– m′ must have been sent in response to m (Response Correlation).

1



Threat Model. A typical deployment scenario for the protocol is where a smartphone Alice
(A) plays the role of I and a server Bob (B) plays the role of the server, and we wish to
protect messages sent between them. In addition, we assume that Alice is also willing to use
this protocol to send requests to Mallory (M), and Bob is willing to respond to requests from
Mallory (M). Mallory is controlled by the adversary (i.e. the adversary knows skM ); she is free
to play the roles of both I and R and may deviate from the protocol.

In addition to controlling Mallory, we assume (as usual) that the adversary controls the
network, and hence can read, inject, and redirect messages sent on the public network. The
adversary can also create any number of keys, and may use the full cryptographic API of
Appendix A to construct and deconstruct messages. However, we assume that the attacker
cannot bypass the cryptographic API to break the underlying crypto primitives, and he cannot
simply guess the secret keys of A and B.

In this adversarial setting, we expect the security goals stated above should hold for all
messages m, m′ sent between A and B, as long as skA and skB remain secret.

2.1 Exercise 1

Does the protocol satisfy its two security goals (including all the authentication sub-goals)?
List the security goals (Request Confidentiality, Response Confidentiality,. . . ) and for each goal,
write Yes/No answers, and informally explain why you think the goal is achieved or not.
If not, demonstrate an attack, and then fix the protocol so that it achieves its goals.

2.2 Exercise 2

Write an F* implementation for the protocol above.
The model will consist of:
• a function send req for A that takes m, pkB, and skA as input and returns the freshly

generated encryption key ek and the (encrypted) message c to be sent to B;
• a function recv req for B that takes c, pkA, and skB as input and returns the key ek and

request message m;
• a function send resp for B that takes m, m′, and ek as input and returns the (encrypted)

message c′ that will be sent to A;
• a function recv resp for A that takes c′ and ek as input and returns m′.

You can assume the F* declarations in Appendix A for the cryptographic primitives. If you
need additional functions, declare them. The syntax you use for F* need not be perfect, but
the logic of the code should be precise and clear.

2.3 Exercise 3

Appendix B presents a labeled cryptographic API. Write labeled types for the four functions
above. State why your types guarantee the secrecy of m and m′.

2.4 Exercise 4

Rewrite the protocol code to use the labeled API. By appealing to the types in the labeled API,
and by adding brief comments to each line of your code, argue why your code is well-typed.

2.5 Extra

Show how would you encode the authenticity goals by modifying the types of your four functions.
Then, informally describe the steps that will be needed to prove that your code meets these
authentication goals. (Hint: You will need to extend the labeled API of Appendix B with
signature predicates and additional lemmas.)

2



A Unlabeled Cryptographic API

(∗ A type for byte arrays ∗)
val bytes: Type0
val zero: bytes (∗ The constant 0 ∗)
val one: bytes (∗ The constant 1 ∗)

val concat: bytes → bytes → bytes
val split: bytes → option (bytes ∗ bytes)
val concat split lemma: b1:bytes → b2:bytes →
Lemma (split (concat b1 b2) == Some (b1,b2))

(∗ Authenticated Symmetric Encryption ∗)
val sym key: Type0
val sym keygen: unit →ST sym key

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val sym enc: k:sym key → p:bytes → c:bytes
val sym dec: k:sym key → c:bytes → option bytes
val sym enc dec lemma: k:sym key → p:bytes →
Lemma (sym dec k (sym enc k p) == Some p)

(∗ Public Key Encryption − Asymmetric ∗)
val pub key: Type0
val priv key: Type0
val priv keygen: unit →ST priv key

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val priv to pub: priv key → pub key
val pke enc: pk:pub key → k:ae key → c:bytes
val pke dec: sk:priv key → c:bytes → option ae key
val pke enc dec lemma: sk:priv key → k:ae key →
Lemma (pke dec sk (pke enc (priv to pub sk) k) == Some k)

(∗ Signatures − Asymmetric ∗)
val sig key: Type0
val verif key: Type0
val sig keygen: unit →ST sig key

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val sig to verif: sig key → verif key
val sign: sk:sig key →msg:bytes → sg:bytes
val verify: vk:verif key →msg:bytes → sg:bytes → bool
val sign verify lemma: sk:sig key →msg:bytes →
Lemma (verify (sig to verif sk) msg (sign sk msg) == true)

B Labeled Cryptographic API

(∗ Principals: participants in protocols ∗)
let principal = string (∗ ”A”, ”B”, ”M”, etc. ∗)

(∗ Secrecy Labels: sets of principals ∗)
type label =
| Public: label
| Secret: list principal → label

let includes l1 l2 =
match l1,l2 with
| Public, →>
| Secret pl1, Secret pl2 →∀p. List.Tot.mem p pl2 =⇒ List.Tot.mem p pl1
| , →⊥

(∗ A type for ∗labeled∗ byte arrays ∗)

3



val lbytes: label →Type0
val coerce: l1:label → l2:label{includes l1 l2} → b1:lbytes l1 → b2:lbytes l2

(∗ zero and one are public ∗)
val zero: lbytes Public
val one: lbytes Public

(∗ Concatenation preserves labels ∗)
val concat: l:label → lbytes l → lbytes l → lbytes l
val split: l:label → lbytes l → option (lbytes l ∗ lbytes l)
val concat split lemma: l:label → b1:lbytes l → b2:lbytes l →
Lemma (split l (concat l b1 b2) == Some (b1,b2))

(∗ Authenticated Symmetric Encryption ∗)
val sym key: l:label →Type0
val coerce sym key: l1:label → l2:label{includes l1 l2} → sym key l1 → sym key l2
val sym keygen: l:label → ST (sym key l)

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val sym enc: kl:label →ml:label{includes ml kl} → k:sym key kl →m:lbytes ml → c:lbytes Public
val sym dec: kl:label → k:sym key kl → c:lbytes Public → option (lbytes kl)

val sym enc dec lemma: kl:label →ml:label → k:sym key kl →m:lbytes ml →
Lemma (requires (includes ml kl))

(ensures (sym dec kl k (sym enc kl ml k m) == Some (coerce ml kl m)))

(∗ Public Key Encryption − Asymmetric ∗)
val pub key: a:principal →Type0
val priv key: a:principal →Type0
val priv keygen: a:principal → ST (priv key a)

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val priv to pub: a:principal → priv key a → pub key a
val pke enc: r:principal → kl:label{includes kl (Secret [r])} →

pk:pub key r → k:ae key kl → c:lbytes Public
val pke dec: r:principal → sk:priv key r → c:lbytes Public → option (ae key (Secret [r]))
val pke enc dec lemma: kl:label → r:principal → sk:priv key r → k:ae key kl →
Lemma (requires (includes kl (Secret [r])))

(ensures (pke dec r sk (pke enc r kl (priv to pub r sk) k) == Some (coerce ae key kl (Secret [r]) k)))

(∗ Signatures − Asymmetric ∗)
val sig key: a:principal →Type0
val verif key: a:principal →Type0
val sig keygen: a:principal →ST (sig key a)

(requires (λ h0 →>))
(ensures (λ h0 h1 → h0 == h1))

val sig to verif: a:principal → sig key a → verif key a
val sign: a:principal →ml:label → sk:sig key a →msg:lbytes ml → sg:lbytes ml
val verify: a:principal →ml:label → vk:verif key a →msg:lbytes ml → sg:lbytes ml → bool
val sign verify lemma: a:principal →ml:label → sk:sig key a →msg:lbytes ml →
Lemma (verify a ml (sig to verif a sk) msg (sign a ml sk msg) == true)

4


