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Verifying Protocols with F*



Modeling Crypto 
and Protocol Execution



A symbolic model of bitstrings



A symbolic model of crypto



A global protocol trace



Executing Protocol Actions (1)



Executing Attacker Actions

knows
cannot 



Attacker Knowledge



Reachable Traces



Stating Secrecy Goals



Stating Authentication Goals



Modular Labeled Proofs for
Crypto Protocols in DY*



Needham-Schroeder Public-Key Protocol



Lowe’s Attack on NS-PK



NS-PK in F*: Messages

Precise Message Formats
• serialization and parsing

with correctness proofs



NS-PK in F*: Session State

Protocol State Machine
• Stateful protocol code 
• Session state storage
• Fine-grained compromise



NS-PK in F*: Protocol Code

Code for Initiator
• Generates a nonce
• Calls crypto functions
• Stores new session state
• Logs a security ecent
• Sends a message



How do we show this NS-PK 
implementation is secure?



DY* Verification Architecture
[Euro S&P 2021]

Trace-based symbolic
runtime model in F*

Abstract labeled APIs 
proved sound in F*

Executable protocol + app
code verified for security



Secrecy Labels for Bytstrings

Who can read a secret?
• Public: anybody
• CanRead [P a; P b]: a or b



Secrecy Labels for Bytstrings

Label for session key in Signal Protocol
• Encodes channel secrecy
• Forward and Post-Compromise security



A Labeled Crypto API

Typed Cryptographic API encodes security assumptions
Using secrecy labels and authentication predicates



Lowe’s Attack as a Type Error
Can n_r be sent to r?
• Does the label of n_r

flow to CanRead [P r]?
• Not provable,

because Lowe’s attack
• Indeed, we can

implement and 
demonstrate symbolic
attack in F*



DY* Verification Architecture
[Euro S&P 2021]

Trace-based symbolic
runtime model in F*

Abstract labeled APIs 
proved sound in F*

Executable protocol + app
code verified for security



DY*: scalable security verification

First mechanized proof of Signal for arbitrary no. of rounds
Proof for an executable F* specification

Verification time grows linerarly with code size
Compared to exponential growth with ProVerif/Tamarin

Proofs require between 50% and 90% annotation overhead
Size of annotation depends on complexity of security goals



Sign-then-Encrypt Protocol

Is this secure?



Man-in-the-Middle Attack

Attacker acting as a valid responder for I,
re-encrypts request to R, 

causing an identity mis-binding attack



Implementing
Sign-Then-Encrypt

(demo)



Modeling Computational
Assumptions



Modular Type-Based Cryptographic Verification
symmetric 
encryption
(AES-CBC)

cryptographic 
algorithms

symmetric 
encryption

(RC4)

Secure RPC

another 
attack

TLS 1.2

active
adversaries

security 
protocols

cryptographic 
constructions

encrypt
then-MAC

fragment-MAC-
encode-then-encrypt

typed interfaces:
cryptographic assumptions

typed interfaces:
attacker models

some 
attack

some 
attack

some 
attack

MAC
(SHA1)

typed interfaces:
security guarantees

INT-CMA IND-CPA

authenticated encryption

secure channel



some cryptographic 
implementation

Sample modular verification (protocol)

RPC protocol using 
Authenticated Encryption

Formatting

active
adversaries

security 
protocols

any typed
F# program

Secure RPC

Bytes

system
libraries

Adversary Model

application code

any typed
F7 program

authenticated encryption message format

RPC API

Networking



Sample modular verification (crypto)

RPC using Encrypt-then-MAC

cryptographic 
schemes

Formatting

active
adversaries

security 
protocols

MAC
authentication

any typed
F# program

Secure RPC

Bytes

system
libraries

Adversary Model

application code

any typed
F7 program

cryptographic
constructions

probabilistic
computational
indistinguishability

Encrypt-then-MAC

AES-CBC
encryption

authenticated encryption message format

RPC API

≈ IDEAL
IND-CPA

≈ IDEAL
INT-CMA

Networking



Sample Typed Interface for Cryptography

MAC : integrity 



Sample functionality:

Message Authentication Codes
module MAC
type text = bytes val macsize
type key  = bytes
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

basic F*
interface

This interface says nothing 
on the security of MACs.



module MAC
type text = bytes val macsize
type key
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MAC keys are abstract

Sample functionality:

Message Authentication Codes



module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MACs are
fixed sized

MAC keys are abstract

Sample functionality:

Message Authentication Codes



module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}
predicate Msg of key * text
val GEN : unit -> key
val MAC : k:key -> t:text{Msg(k,t)} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true => Msg(k,t)}

ideal F*
interface

“All verified messages
have been MACed”

MAC keys are abstract

MACs are
fixed sized

Msg is specified  by 
protocols using MACs

Sample functionality:

Message Authentication Codes



module MAC
open System.Security.Cryptography
let macsize = 20
let GEN()   = randomBytes 16
let MAC k t = (new HASHMACSHA1(k)).ComputeHash t
let VERIFY k t m = (MAC k t = m)

module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}
predicate Msg of key * text
val GEN : unit -> key
val MAC : k:key -> t:text{Msg(k,t)} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true => Msg(k,t)}

ideal F*
interface

MAC keys are abstract

MACs are
fixed sized

Msg is specified  by 
protocols using MACs

concrete F*
implementation

(using real crypto)

“All verified messages
have been MACed”

This can’t be true! 
(collisions)

Sample functionality:

Message Authentication Codes



Sample computational assumption:

Resistance to Chosen-Message
Existential Forgery Attacks (INT-CMA)

module INT_CMA_Game
open Mac
Let private k = GEN()
let private log = ref []
let mac t =

log := t::!log
MAC k t

let verify t m =
let v = VERIFY k t m in
if v && not (mem t !log) then FORGERY
v

CMA game
(coded in F#)

Computational Safety
a probabilistic polytime program
calling mac and verify forges a MAC
only with negligible probability ²



protocol adversary
typed against
RPC interface

Computational Safety for MACs
concrete system

RPC
protocol

Mac

sample protocol
typed against
ideal MAC interface

Ideal
filter

error correction
making VERIFY returns
false on forgeriesIdeal MAC

Mac

Any p.p.t. 
adversary

RPC
protocol

Any p.p.t. 
adversary

F# interfaceF# interface

ideal system

secure RPC

concrete algorithm
assumed INT-CMA computationally

safe too,  
with probability  1 – 1/𝛆

perfectly safe
by typing

≈

IN
T-

CM
A 

ad
ve

rs
ar

y



Sample ideal functionality:

Supporting Key Compromise
module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}
predicate Msg of key * text
val GEN : unit -> key
val MAC : k:key -> t:text{Msg(k,t)} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true => Msg(k,t)}

val keysize
type keybytes = b:bytes{Length(b)=keysize}
val LEAK:   k:key{!t. Msg(k,t)} -> b:keybytes
val COERCE: b:keybytes{…}       -> k:key{…}

ideal F*
interface

“All verified messages
have been MACed”

MAC keys are abstract

MACs are
fixed sized

Msg is specified  by 
protocols using MACs

MAC keys have 
concrete 
representations

It is safe to turn keys into bytes
when all messages are verifiable



Perfect Secrecy by Typing

• Secrecy is expressed using observational equivalences
between systems that differ on their secrets

• We prove (probabilistic, information theoretic)
secrecy by typing, relying on type abstraction



Plaintext Modules

• Encryption is parameterized by a module
that abstractly define plaintexts, with interface

module Plaintext
val size: int
type plain
type repr = b:bytes{Length(b)=size}
val coerce : repr -> plain // turning bytes into secrets
val leak : plain -> repr // breaking secrecy!

val respond: plain -> plain // sample protocol code

If we remove the leak function, 
we get secrecy by typing 

The size of plaintext is fixed 
(as we cannot hide it)

Plain may also implement any 
protocol functions that operates on secrets

If we remove the coerce function, 
we get integrity by typing 



Ideal Interface for Authenticated Encryption

• Relying on basic cryptographic assumptions (IND-CPA, INT-CTXT) 
its ideal implementation never accesses plaintexts! 
Formally, ideal AE is typed using an abstract  plain type
ENC k p encrypts instead zeros to c & and logs (k,c,p)
DEC k c returns Some(p) when (k,c,p) is in the log, or None

module AE
open Plaintext
type key
type cipher = b:bytes{Length(b)= size + 16}

val GEN: unit-> key
val ENC: key -> plain  -> cipher
val DEC: key -> cipher -> plain option



An Ideal Interface for CCA2-Secure Encryption

• Its ideal implementation encrypts zeros instead of plaintexts
so it never accesses plaintext representations, 
and can be typed parametrically

module PKENC
open Plain
val pksize: int
type skey
type pkey = b:bytes{ PKey(b) Æ}

val ciphersize: int
type cipher = b:bytes{Length(b)=ciphersize}

val GEN: unit -> pkey * skey
val ENC: pkey -> plain -> cipher
val DEC: skey -> cipher -> plain



Typed Secrecy from CCA2-Secure Encryption



Variants: CPA & Authentication
• With CPA-secure encryption, we have a weaker ideal interface

that demands ciphertext integrity before decryption

• With authenticated encryption, we have a stronger ideal interface 
that ensure plaintext integrity (much as MACs)

predicate Encrypted of key * cipher

val ENC: k:key -> plain -> c:cipher{Encrypted(k,c)}
val DEC: k:key -> c:cipher{Encrypted(k,c)} -> plain

predicate Msg of key * plain // defined by protocol

val ENC: k:key -> p:plain{Msg(k,p)} -> cipher
val DEC: k:key -> cipher -> p:plain{Msg(k,p)} option



DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfoTLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlainApplication

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions
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2
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5

6
7

Range

8

9Error

Modular Architecture for miTLS



our main
TLS API 
(outline)

type cn // for each local instance of the protocol

// creating new client and server instances
val connect: TcpStream -> params -> (;Client) nullCn Result
val accept:  TcpStream -> params -> (;Server) nullCn Result

// triggering new handshakes, and closing connections
val rehandshake: c:cn{Role(c)=Client} -> cn Result
val request:     c:cn{Role(c)=Server} -> cn Result
val shutdown:    c:cn -> TcpStream Result

// writing data  
type (;c:cn,data:(;c) msg_o) ioresult_o =
| WriteComplete of c':cn
| WritePartial of c':cn * rest:(;c') msg_o
| MustRead of c':cn
val write: c:cn -> data:(;c) msg_o -> (;c,data) ioresult_o

// reading data  
type (;c:cn) ioresult_i =
| Read      of c':cn * data:(;c) msg_i
| CertQuery of c':cn
| Handshake of c':cn
| Close     of TcpStream
| Warning   of c':cn * a:alertDescription
| Fatal     of a:alertDescription 
val read : c:cn -> (;c) ioresult_i

Each application provides
its own plaintext module
for data streams:
• Typing ensures  

secrecy and authenticity 
at safe indexes

Each application creates
and runs session & 
connections in parallel  
• Parameters select 

ciphersuites and 
certificates

• Results provide
detailed information
on the protocol state



Security theorem

concrete TLS & ideal TLS are 
computationally 
indistinguishable

using standard program 
verification (typing)

miTLS
implementation

miTLS typed API

Bytes, Network
lib.fs

Cryptographic Provider

cryptographic assumptions

any program
representing the 

adversary

application
data stream

miTLS ideal  
implementation

miTLS typed API

application

Safe, except for a 
negligible probability

Safe by typing
(info-theoretically)



Final Thoughts
Many pitfalls in cryptographic software 

Formal security proofs for real-world crypto 
protocols are now feasible

CRYPTO
LIBRARY

PROTOCOL

APPLICATION




