
Verifying Policy-Based Security for Web Services

Karthikeyan Bhargavan
Microsoft Research

Cédric Fournet
Microsoft Research

Andrew D. Gordon
Microsoft Research

ABSTRACT
WS-SecurityPolicy is a declarative configuration language for driv-
ing web services security mechanisms. We describe a formal se-
mantics for WS-SecurityPolicy, and propose a more abstract link
language for specifying the security goals of web services and their
clients. Hence, we present the architecture and implementation of
fully automatic tools that (1) compile policy files from link specifi-
cations, and (2) verify by invoking a theorem prover whether a set
of policy files run by any number of senders and receivers correctly
implements the goals of a link specification, in spite of active at-
tackers. Policy-driven web services implementations are prone to
the usual subtle vulnerabilities associated with cryptographic pro-
tocols; our tools help prevent such vulnerabilities, as we can verify
policies when first compiled from link specifications, and also re-
verify policies against their original goals after any modifications
during deployment.
Categories and Subject Descriptors:F.3.2 [Theory of Computa-
tion]: Logics and meanings of programs—Semantics of Program-
ming Languages
General Terms: Security, Languages, Theory, Verification
Keywords: Web Services, Pi Calculus, XML Security

1. INTRODUCTION
Web services can protect SOAP [23] messages sent over inse-

cure transports by embedding security headers. The WS-Security
standard [17] defines how such headers may include signatures,
ciphertexts, and a range of security tokens, such as tokens iden-
tifying particular principals. Relying on generic implementations
in libraries, web service programmers can pick and mix headers
for messages, depending on their security needs, thereby designing
their own application-level protocols above SOAP.

Like all networked systems secured via cryptography, web ser-
vices may be vulnerable to a class of attacks, first described by
Needham and Schroeder [18] and first formalized by Dolev and
Yao [11], where an attacker may intercept, compute, and inject
messages, but without compromising the underlying cryptographic
algorithms. In the setting of SOAP security, we refer to these as
XML rewriting attacks, as opposed to attacks on web services im-
plementations, such as buffer overruns or SQL injection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

WS-SecurityPolicy [10], built on the WS-Policy [8] and WS-
PolicyAssertion [9], is a declarative XML format for programming
how web services implementations construct and check WS-Secu-
rity headers. By expressing security checks as XML metadata in-
stead of imperative code, policy-based web services conform to the
general principle of isolating security checks from other aspects
of message processing, to aid human review of security. More-
over, coding security checks as XML metadata aids interoperabil-
ity since the metadata may easily be exchanged between different
implementations on different platforms.

Still, driving web services security from WS-SecurityPolicy is
no panacea. First, despite its name, WS-SecurityPolicy drives low-
level mechanisms that build and check individual security head-
ers; we need a way to relate policies to more abstract, application-
level goals such as message authentication or secrecy. Second, the
configuration files, including WS-SecurityPolicy files, of a SOAP-
based system largely determine its vulnerability to XML rewriting
attacks; WS-SecurityPolicy gives freedom to invent new crypto-
graphic protocols, which are hard to get right, in whatever guise.

We propose a new language and two new tools to address these
problems. Our high-level link specification language describes in-
tended secrecy and authentication goals for messages flowing be-
tween SOAP processors; our link language is a simple notation,
covering some common cases, and could easily be generated from a
simple UI or a systems modelling tool. Our first tool compiles link
specifications to WS-SecurityPolicy configuration files. In part be-
cause of the subtle semantics of policy files, it is safer to generate
them from link specifications than write them directly. Our sec-
ond tool is an analyzer to check (prior to execution) whether the
security goals of a link specification are achieved by a given set of
WS-SecurityPolicy files. Our analyzer works by constructing a for-
mal model of a set of SOAP processors, together with the security
checks they perform, in the TulaFale scripting language, a dialect
of the pi calculus. We then run existing tools for TulaFale to check
automatically whether the security goals of the formal model are
vulnerable to any XML rewriting attacks.

We have implemented the techniques of this paper for a partic-
ular policy-driven implementation of Web Services security, the
Web Services Enhancements toolkit (WSE) [15], and in the process
found and corrected several security problems. In principle, our ap-
proach can easily be adapted to other systems based on WS-Secu-
rityPolicy. For the sake of readability, we suppress most details
of the XML wire format in this paper, and instead use an abstract
notation for policies; nonetheless, our implementation directly con-
sumes and produces the XML files used by WSE.

Our work builds on much recent research on developing auto-
matic analyses of abstract descriptions of cryptographic protocols.
Specifically, it is part of our attempt to give a formal semantics to

web services security [12, 2, 4]. We rely on previous models of
WS-Security in the pi calculus, and compose these models to sup-
port declarative security policies. To the best of our knowledge,
the tools described here are the first to check implementation files
configuring SOAP security protocols for vulnerabilities to XML
rewriting attacks. Having tools construct the formal model to be
analyzed is advantageous as it eliminates any human error arising
from constructing ad hoc models by hand. It also enables the sys-
tematic testing of the policy files used to deploy web services.

The paper is organized as follows. In Section2, we review and
discuss security policies for web services, and set up notations.
Section3 describes the architecture of our formal tools. In Sec-
tions 4 and5, we explain their implementation, first as an opera-
tional semantics for policies expressed as TulaFale predicates, then
as a translation of links to policies and to security checks. Section6
explains the formal security results we can automatically derive for
the policies generated from these links. Section7 discusses some
extensions of our basic results. Section8 concludes. A technical
report [3] provides detailed examples and the formal scripts used to
verify their correctness.

2. SECURITY POLICIES FOR
WEB SERVICES (REVIEW)

2.1 Web Services and their Configuration
We consider systems of SOAP [23] processors distributed across

multiple machines. Each processor may send and receive SOAP
envelopes for various services. The envelope format is processed
by generic system libraries driven by declarative configuration files,
whereas the envelope payload is processed by imperative applica-
tion code. For instance, a simple (unprotected) envelope may be of
the form:

<Envelope>
<Header>
<To>http://bobspetshop.com/service.asmx</To>
<Action>http://petshop/premium</Action>
<MessageId>uuid:5ba86b04...</MessageId></Header>

<Body>
<GetOrder><orderId>20</orderId></GetOrder></Body>

</Envelope>

(For the sake of brevity, we omit XML namespace information
in this paper.) This envelope has a message body, representing a
method call at the service, preceded by optional WS-Addressing [7]
headers that provide the URIs of the target service and action and a
unique message identifier. To return the result ofGetOrder(20),
the service may send a response envelope that includes a header
<RelatesTo>uuid:5ba86b04...</RelatesTo> instead of<To>
and<Action> to route the response to the requester.

SOAP envelopes can be protected using a<Security> header
containing security tokens [17]. For instance, message integrity
may be protected by a token embedding an XML digital signature,
whereas the identity of the sender may be passed as a second token
embedding an X.509 certificate. Parts of the envelope may be en-
crypted, possibly using a third token to indicate how to derive the
decryption key.

2.2 WS-Policy and WS-SecurityPolicy
Next, we define an abstract syntax for the policies considered in

this paper. We omit the explicit choice of algorithms for canonical-
ization, secure hash, shared-key encryption, and so on, and assume
a fixed algorithm for each purpose. We use the constructor List for
ML-style lists, separated by commas and enclosed within brackets.

Policies:

part : Part ::= Message Parts
Header(tag : string) SOAP Header
Body SOAP Body

tk : Token ::= Token Descriptions
X509 X.509 Cert
X509(sub : string) with subject sub
Username User/Password
Username(u : string) with user u

pol : Pol ::= Policies
None Empty, true
All (ps : List(Pol)) Conjunction
OneOrMore(ps : List(Pol)) Disjunction
Integrity(tk : Token,pts : List(Part)) Integrity
Confidentiality(tk : Token,pts : List(Part)) Confidentiality

WS-Policy structures policy files as logical formulas overbase
assertionsthat can be composed using operators for conjunction,
All[. . .], and disjunction, OneOrMore[. . .]. In the following, we
omit other features of WS-Policy seldom used for security, such as
the ExactlyOne[. . .] operator and the Rejected and Optional modi-
fiers—our assertions are all implicitly Required.

WS-SecurityPolicy defines two base assertions for integrity and
confidentiality. Each assertion refers to a key, either from an X.509
certificate or derived from a shared secret associated with the client.
In SOAP envelopes, this is implemented by embedding either an
X.509 token or a username token in the security header. Although
the actual key is provided at runtime from a local database, the
assertion may specifically request a subject name. Each assertion
is also parameterized by a list of parts, denoting target elements of
the envelope to be encrypted or jointly signed. Each part may be
specified by its header name, or more generally using an XPath [22]
expression. For each integrity assertion, a XML digital signature
token is embedded in the security header. For each encrypted part,
the target element is replaced with its encryption.

On the receiver side, a SOAP envelope is accepted as valid, and
passed to the application, if its policy is satisfied for this envelope.
Conversely, on the sender side, the protocol stack generates SOAP
envelopes that satisfy its policy. Normally, the sender policy should
be at least as demanding as the receiver policy. This may be en-
forced by exchanging and comparing policies beforehand, using
auxiliary protocols.

As an example, the following policy may be used to secure the
envelope shown in Section2.1, by encrypting its message body
using the service’s X.509 public encryption key, and by signing
all its elements using a shared secret associated with the client.

All [Integrity(Username, [Header("To"),Header("Action"),
Header("MessageId"),Body]),

Confidentiality(X509("BobsPetShop"),[Body])]

2.3 Policy Maps (in WSE)
Since a SOAP processor may host (and interact with) many ser-

vices with diverse security requirements, it is essential to specify
how policies are associated with services and envelopes. In this
paper, we select the policies for processing SOAP envelopes via
two partial maps from SOAP endpoints to individual policies, for
incoming and outgoing envelopes, respectively. We use the fol-
lowing abstract syntax for policy configurations. (It is based on the
local configuration format in a preliminary version of WSE 2.0, and
differs a little from the format used in the released version [15].)

Configurations:

uri : URI ::= anyLegalXmlUri Set of URIs
addr : Addr ::= SOAP Endpoints

Default Any service, any action
ToDefault(suri : URI) Service suri, any action
ToAction(suri : URI,ac : URI) Service suri, action ac

map : Polmap ::= Policy Maps
Send(addr : Addr,pol : Pol) Send Policy for addr
Receive(addr : Addr,pol : Pol) Receive Policy at addr

cfg : Config ::= polmaps : List(Polmap) Configurations

As an example, we give a configuration for the client that sup-
ports the request and response for http://bobspetshop.com. The
configuration consists of a send policy map for generating requests,
and a receive policy map for checking responses:

clientConfig =
[Send(ToAction("http://bobspetshop.com/service.asmx",

"http://petshop/premium"),
Integrity(Username,Req)),

Receive(Default,Integrity(X509("BobsPetShop"),Resp))]

Req= [Header("To"),Header("Action"),Header("MessageId"),
Header("Created"),Body]

Resp= [Header("From"),Header("RelatesTo"),Header("MessageId"),
Header("Created"),Body])]

The configuration maps requests with<To>"http://bobspetshop.
com/service.asmx"</> and<Action>"http://petshop/premium"

</> to a policy that signs the message body, relevant WS-Addressing
headers, and a creation timestamp header. The receive policy maps
all responses to a similar policy that ensures that the relevant re-
sponse message parts are signed using an X.509 certificate assigned
to "BobsPetShop". The message parts,ReqandResp, in this config-
uration represent the minimum set that need to be signed for safety;
hence they appear several times in this paper.

2.4 Discussion
Policies can be rather weak: for the receiver, the policy Integrity

[X509("Alice"),[Body]] only guarantees that a client with an Al-
ice certificate sent an envelope with the received message body,
to some service, at some point. It provides neither message au-
thentication nor replay protection, as an attacker can rewrite any-
thing else in intercepted envelopes. As another example, the policy
All[Integrity(t,[Header("MessageId")]),Integrity(t,[Body])] for a
token t is weaker than Integrity(t,[Header("MessageId"),Body])
since the former accepts an envelope with separate signatures for
the message identifier and contents.

The choice of a policy usually depends on the service and its
implementation; for instance, authentication of the<To> and the<
Action> elements matters if the same certificate is used for differ-
ent services and actions. Similarly, elements used to implement re-
play protection or message correlation (typically the message iden-
tifier and the sender’s timestamp) should be authenticated by de-
fault, even if the application ignores them. More generally, headers
trusted by the application, say for transaction management, should
be authenticated. Conversely, given intermediate SOAP processors,
a service should not expect all headers to be signed.

Independently, the implementation of policies in a SOAP proto-
col stack is non-trivial. For instance, the ordering of encryption and
signing operations obviously matters, but is left unspecified.

Finally, one cannot realistically hope to capture all security needs
with a simple declarative syntax, so it is important to understand
how basic needs expressible in policies can be supplemented with
ad hoc mechanisms, relying for instance on custom security tokens.

For instance, an essential limitation of the core policy language is
that it is stateless, that is, its interpretation does not depend for
example on previously-received messages. This calls for extension
mechanisms for properties that concern series of messages, such as
correlation between successive requests to the same service.

3. ARCHITECTURE OF POLICY TOOLS
We present the design and implementation for our tools, leaving

most details to the next two sections. Our general approach, de-
picted in Figure1, is to develop an operational model for web ser-
vices that (1) closely reflects their actual deployments and (2) sup-
ports automated verification of security properties. As well as run-
ning web services applications using WSE, we symbolically verify
their security using TulaFale, a scripting language for expressing
XML security protocols.

3.1 TulaFale, a Security Tool for Web Services
TulaFale [4] is a typed language based on the applied pi calcu-

lus [1] with support for XML processing, built on top of ProVerif [6,
5], a cryptographic protocol verifier. The language has terms, pred-
icates, and processes.

Terms combine XML and symbolic “black-box” cryptography,
parameterized by a set of rewrite rules. For instance, we define
AES symmetric encryption and decryption in TulaFale as follows:

constructorAES(bytes,bytes):bytes.
destructordecryptAES(bytes,bytes):bytes

with decryptAES(k,AES(k,b)) = b.

Prolog-style predicates operate on terms; they are used to reflect
the syntax and informal semantics of web services specifications.
For instance, the following predicate gives a (simplified) account
of a WS-Security username token, by describing how to build this
XML token and compute a derived key from usernameu, secret
pwd, timestampt, and noncen:

predicatemkUserTokenKey (tok:item,u,pwd,t:string,n:bytes,k:bytes) :−
tok = <UsernameToken>

<Username> u </>
<Password Type="None"></>
<Nonce> base64(n)</>
<Created> t </> </>,

k = psha1(pwd,concat(n,utf8(t))).

Processes express configurations of principals that send, receive,
and transform terms using these predicates. Processes can gener-
ate names modelling secrets, nonces, and message identifiers; pi
calculus scoping tracks knowledge of freshly generated names.

We model the attacker as some arbitrary process context, running
in parallel with the system configuration, and thus able to mount
any active attack combining communications, cryptography, and
XML rewriting. The only restriction is that fresh names are not
initially known by the attacker.

To check formal security properties, we compile our TulaFale
scripts to the applied pi calculus, and then invoke ProVerif. For
each property, either ProVerif succeeds, and establishes the prop-
erty for all runs, in any context, or it fails with a trace that we can
(usually) decompile into a TulaFale counterexample that describes
an attack, or it diverges. (With a little user adjustment of scripts,
divergence can usually be avoided in practice.) Properties include
confidentiality (some name remains secret for all runs) and authen-
ticity (expressed as correspondences between special events per-
formed by processes to mark their progress). Since TulaFale scripts
define processes, the general theory of the pi calculus can also be
usefully applied, for instance to prove complementary properties
by hand, or to generalize automatically-proved properties.

��������
	
���

���
�
�
���������

�������	��
�����������
������������
�

�������������

����

����
����������	
�
������
���	�����
��

������ �� �
��
������	

 �
!����
"�����������#

$���%���

�
��
��������
�
��

$���%����������
���������

���������
�������

�
���	�����
�
�
�������������

�
���	�����
��
	������
������

����
�
���	
����

������
���

����������&

���

Figure 1: Generating and Checking Web Services Security Policies

Although we successfully applied TulaFale to verify a series of
SOAP configurations, and reflected a significant part of WS-Security
as a TulaFale library, modelling in TulaFale remains delicate: only
experts can be expected to write scripts and safely interpret the re-
sults of ProVerif.

3.2 Compiling Policies to TulaFale Scripts
To verify declarative SOAP configurations, we introduce a new

tool that compiles these configurations to TulaFale scripts, thereby
giving a precise operational semantics to their specifications. The
core of our “configuration compiler” (see Figure1) consists of a
translation from WS-SecurityPolicy formulas to TulaFale predi-
cates on envelopes relying on (our existing model of) WS-Security.
Pragmatically, our tool also collects the policy maps of a WSE im-
plementation and automatically generates its TulaFale script. From
that point, one can handwrite relatively short security properties
for the configuration and verify them using TulaFale. More su-
perficially, the tool can also detect and report common errors in
policy configurations (often apparent in TulaFale), such as unau-
thenticated routing information.

Crucially, our tools and the actual web service runtime take as
input the same policy configurations. Hence, we can directly de-
termine web services vulnerabilities caused by misconfiguration of
policy files. In contrast, in previous work, protocol verifiers work
on ad hoc, handwritten, abstract descriptions of security protocols,
and the gap between the handwritten description and the running
code can lead to errors, and is tedious to check and to maintain. In
other words, many formal techniques for verifying cryptographic
protocols are now available, but their systematic application here
to reflect actual distributed deployment of protocols is new.

3.3 Generating Security Goals and Policies for
Abstract Configurations

In the absence of an existing XML schema for writing high-level
security goals, we design our own simple format forsecure links
between SOAP endpoints hosting sets of principals acting as clients
and servers. This format can mention a few basic security proper-
ties, such as message authentication, but is otherwise very limited:
indeed, our goal here is that links be much easier and safer to con-
figure than policy maps.

The link language is considerably more abstract (and less ex-
pressive) than policy maps, so that reviewing the security of a link

specification is much easier than understanding the security impli-
cations of every detail in a configuration. For instance, they can
be designed so that automatically-generated configurations avoid
common pitfalls, thereby providing “secure by default” web ser-
vices configurations.

Both our new tools take a link specificationL as input. The first
(“configuration generator” in Figure1) generates WSE policy con-
figurationsC (L) to implementL. The second (“configuration com-
piler” in Figure1) generates a TulaFale scriptS(C,L), which con-
sists of a formal model of the policy configurationC, plus security
goals extracted fromL.

For anyL, we can check correct generation ofC (L) by compiling
to the scriptS(C (L),L), and running the TulaFale verifier. Alter-
natively, we can use a different (or a modified) configurationC′,
for instance by handwriting some of the policies, and check that
the amended configuration still meets the original security goals,
by verifying the scriptS(C′,L). In this case, we automatically ver-
ify formal security guarantees, without the need to manipulate Tu-
laFale scripts. For instance, one could run the verifier whenever
the configuration is edited, before committing the changes to a live
system.

4. FROM POLICIES TO PROCESSES
From policy configurations, the configuration compiler of Fig-

ure 1 generates scripts representing distributed systems of SOAP
processors, with an arbitrary number of senders and receivers. These
scripts provide our formal semantics; they can be read as concurrent
programs coded in the pi calculus. This section explains important
parts of these scripts, partly by example. We also experimented
with variants of these scripts with richer models of processors and
attackers, discussed in Section7.

A script essentially implements a single, generic SOAP proces-
sor. It consists of the composition of four subprocesses, with the
active attacker being an implicit process running in parallel. Two of
these subprocesses, UsernameGenerator and X509Generator, code
an abstract interface for managing secrets; they model our assump-
tions on principals, trust, and insider attacks; they do not depend on
the configuration. The two remaining subprocesses, GenericSender
and GenericReceiver, code SOAP processors that send and receive
envelopes on behalf of principals; they rely on predicates compiled
from policy maps.

4.1 Principals, Trust, and Insider Attacks
For simplicity, principals are identified by their (string) name, as

they appear in authentication tokens: their subject field in X.509
certificate, and their username in username tokens. In WSE, prin-
cipals provide code describing which envelopes to send and what
to do with received envelopes. These details of the application are
best left implicit in our model. Instead, we implement a control
interface that enables the attacker to make these decisions. In addi-
tion, we provide a control interface enabling the attacker to trigger
the generation of certificates and shared secrets for arbitrary prin-
cipals, and to control whether they are leaked.

The generation of shared passwords is modelled as follows:

processUsernameGenerator() =
(!in genUPChan(u);

newpwdu;
let entry =<UserPassword>

<Username>u</><Password>pwdu</></> in
(!out dbChan(entry)))

|(!in genLeakUPChan(u);
newpwdu;
let entry =<UserPassword>

<Username>u</><Password>pwdu</></> in
((beginLeak(u);out publishChan(pwdu))| (!out dbChan(entry))))

This process has two replicated inputs (!in) on channels genUPChan
and genLeakUPChan. Whenever the environment sends the name u
of a principal on channel genUPChan, this message is received

by the first replicated input, a fresh secret password pwdu is gen-
erated (newpwdu), and the username and password are recorded
as a replicated message entry sent on channel dbChan (!out). As
opposed to genUPChan, channel dbChan is private to the SOAP
processor: the entry may be read by the senders and receivers de-
tailed in Section4.2 below, but not by the environment (including
the attacker).

The channel genLeakUPChan implements a similar service that
models passwords leaked to the attacker. As above, each message
on genLeakUPChan triggers the generation of a fresh secret pass-
word for u and its recording on dbChan. In addition, the pass-
word is sent on public channel publishChan, and can thus be read
by the environment. Before leaking the password, however, an
event Leak(u) is issued, indicating that principal u can no longer
be trusted. Such events are invisible to the SOAP processor; they
are used only to specify proof goals that account for leaked secrets.

Our model assumes that passwords are cryptographically strong,
that is, are not subject to guessing attacks; we leave extensions to
the web services policy framework to protect weak user-memorable
passwords as future work.

The generation of certificates is similar: X509Generator in the
technical report [3] implements a single certification authority with
two public channels genXChan and genLeakXChan.

4.2 Generic Senders and Receivers
Our SOAP processors act on behalf of principals by reading their

entries on channel dbChan. Without loss of generality, our script
can thus include a single generic sender and a single generic re-
ceiver. (Formally, we can show that a configuration with multiple
SOAP processors is observationally equivalent to a configuration
with a single generic processor hosting all principals.)

The SOAP sender, illustrated below in a simple case, repeatedly
inputs an envelope env from the environment on channel initChan
and then instantiates the sending and receiving principals by read-
ing their entries, sid and rid, from dbChan.

processGenericSender() =
!in initChan(env);

in dbChan(sid);in dbChan(rid);
new freshid;
filter mkConformant(env,[sid],[rid],[freshid],outenv)→outenvin
filter linkAssert(sid,rid,env,a)→a in begin (Log,a);//∗ cf. Section5
out (httpChan, outenv)

This process attempts to enforce the send policy for messages be-
tween these principals by rewriting env into a policy-compliant
envelope outenv, then sending this new envelope on httpChan, a
public channel representing the network. To this end, it first cre-
ates a fresh message identifier, freshid. Then, it uses thefilter ...in
construct to call TulaFale predicates mkConformant and linkAssert
before actually sending the new envelope.

Policy enforcement depends on the configuration, via the pred-
icate mkConformant, defined below. This predicate picks a send
policy and attempts to enforce it for some set of principals by per-
forming cryptographic operations on the input envelope.

Symmetrically, our SOAP receiver takes an envelope from the at-
tacker on channel httpChan, instantiates the sending and receiving
principals, and checks the receive policy for the intended destina-
tion before accepting the envelope.

processGenericReceiver() =
!in httpChan(env);
in dbChan(sid);in dbChan(rid);
filter isConformant(env,[sid],[rid],outenv)→outenvin
filter linkAssert(sid,rid,outenv,a)→a in end (Log,a);//∗ cf. Section5
done

This process uses the predicate isConformant, defined below, that
picks a receive policy and checks that the envelope conforms to it
for some set of senders and receivers.

4.3 Compiling Policies to Predicates
The policy configuration of the SOAP system is enforced using

two predicates, mkConformant and isConformant, whose clauses
are compiled from send and received policies, respectively. We as-
sume that each policy has a unique identifier that can be used as its
name. We present the clauses generated from the client side con-
figuration clientConfig given in Section2. Our configuration has a
single send policy ("ClientToService") requiring a signature on
five message parts keyed using a password-based key. This yields
the predicate:

predicatehasSendPolicyClientToService(env:item, sids, rids, fresh:items,
outenv:item) :−

sids = [user @],
isUserPassword(user,u,p),
fresh = [NewMessageId n t @],
hasRequestParts(env,Toitm,Actionitm,MessageIditm,

CreatedItm,Bodyitm),
MessageIditm =<MessageId>NewMessageId</>,
mkUserTokenKey(utok,u,p,n,t,k),
mkSignature(sig,"hmacsha1",k,

[Toitm,Actionitm,MessageIditm,Createditm,Bodyitm]),
outenv =<Envelope>

<Header>
Toitm Acitm MessageIditm
<Security>
<Timestamp>Createditm</>
utok sig</></>

Bodyitm</>

The predicate first extracts a username and password (u,p) for the
signing principal from the sids database. Here, sids is a list of items,
the operator @ denotes list concatenation, andis an unnamed vari-
able standing for the tail. The predicate then extracts three fresh
names: the message identifier for the envelope, a nonce, and a time-
stamp for generating a password-based key. Next, it parses the en-
velope to extract the five message parts corresponding toReq; here

we use a predicate call to hasRequestParts as shorthand for the five
calls. The predicate then creates a new<MessageId> element with
the fresh message identifier. The mkUserTokenKey predicate gen-
erates a new username token utok and password-based key k for
the principal u using the password p and the fresh nonce and time-
stamp. The mkSignature predicate uses the key k to construct an
XML signature sig that signs the five message parts. Finally, the
predicate constructs an output envelope outenv with the signed in-
put message parts, new message identifier, and the new username
token and signature.

Each send policy P is thus translated to a different predicate
hasSendPolicyP. Each send policy map, Send(addr,P), is then trans-
lated to a clause of mkConformant that invokes hasSendPolicyP if
the destination service and action of an envelope matches addr. For
instance, the send policy map in clientConfig translates to:

predicatemkConformant(env:item,sids, rids, fresh:items,outenv:item) :−
hasHeaderTo(env,Toitm,Toval),
hasHeaderAction(env,Actionitm,Actionval),
Toval ="http://bobspetshop.com/service.asmx",
Actionval ="http://petshop/regular",
hasSendPolicyClientToService(env,sids,rids,fresh,outenv).

The second policy (ServiceToClient) in clientConfig is a receive
policy that checks that five message parts (Resp) in the response
message are signed with an X.509 certificate issued to the princi-
pal BobsPetShop. The corresponding receive policy map (for the
Default address) is translated to a clause of the isConformant pred-
icate that simply invokes hasReceivePolicyServiceToClient.

predicatehasReceivePolicyServiceToClient(env:item, sids, rids:items,
outenv:item) :−

hasResponseParts(env,Fromitm,RelatesToitm,MessageIditm,
CreatedItm,Bodyitm),

hasSecurityHeader(env,toks),
xtok in toks, sigin toks,
isX509Token(xtok,"BobsPetShop",k,sids),
isSignature(sig,"rsasha1",k,

[Fromitm,RelatesToitm,MessageIditm,Createditm,
Bodyitm]),

outenv = env.

predicateisConformant(env:item, sids, rids:items, outenv:item) :−
hasReceivePolicyServiceToClient(env,sids,rids,outenv).

The hasReceivePolicyServiceToClient predicate extracts the mes-
sage parts corresponding toRespand checks that the envelope has
an X.509 token, forBobsPetShop, and has a signature keyed with
this token that covers all the response message parts.

5. FROM LINKS TO POLICIES
A link defines high-level security goals for SOAP sessions be-

tween clients and servers, for a given service. In the simplest case,
each session has a single message. Although this is the only case
considered in this section, our tools and methodology extend to
more complicated sessions; for example, Section7 shows how to
address request-response correlation. Each link specifies basic,
strong security properties for the request messages from client to
service, and for the response messages from service to client. The
messages in each direction must be authenticated and optionally
encrypted. A signature must cover the web service, the message
body, and a message identifier. The formal syntax is as follows:

Links and Link Specifications:

secr : Secr ::= Clear| Encrypted Secrecy level
ps : PrincipalSet ::= Any | pset : List(string) Set of principals
link : Link ::= Links

(suri : URI, Service URI
actions : List(URI), Enabled actions
clientPrin : PrincipalSet, Authorized clients
servicePrin : PrincipalSet, Service principals
secrLevel : Secr) Body secrecy

L : LinkSpec ::= List(Link) Link specification

We allow at most one link for each service URI in any link spec-
ification. Each link consists of the web service URI (suri), the set
of allowed actions (actions), the set of principals that can act as
clients (clientPrin) or as the web service (servicePrin), and the se-
crecy level (secrLevel) for both directions. Recall that a principal
name is the username in a user/password combination or the sub-
ject name in an X.509 certificate. The secrecy level can either be
Clear, meaning no encryption, or Encrypted, meaning that both re-
quests and responses must have encrypted bodies. For encryption,
both the client and server principal must use X.509 certificates. As
an example, consider:

L0 = [("http://bobspetshop.com/service.asmx",
["http://petshop/premium"], Any, ["BobsPetShop"], Clear)]

This says servicehttp://bobspetshop.com/service.asmx of-
fers an actionhttp://petshop/premium. Its clients can act on
behalf of any trusted principal, but the service acts only on behalf
of BobsPetShop. All messages are authenticated, but encryption
is not required.

5.1 Generating Policy Configurations
We now describe the configuration generatorC (−) of Figure1,

that translates a list of links to a configuration consisting of a list of
policy maps. We give the translation for the exampleL0. The com-
panion technical report [3] deals with the general case, and provides
detailed rules for generating policy configurations.

Preq = OneOrMore[Integrity(Username,Req), Integrity(X509,Req)]
Presp = OneOrMore[Integrity(Username("BobsPetShop"),Resp),

Integrity(X509("BobsPetShop"),Resp)]
A = ToAction("http://bobspetshop.com/service.asmx",

"http://petshop/premium")
Cc = [Send(A,Preq), Receive(Default,Presp)]
Cs = [Receive(A,Preq), Send(Default,Presp)]
C0 = C (L0) = Cc @Cs

Our request policyPreq requires a digital signature on (at least)
the message partsReq signed by a principal using one of their
X.509 certificates or shared client passwords. Our response pol-
icy Presp requires a similar signature onResp, signed specifically
by BobsPetShop.

The policy configuration at the serviceCs consists of a receive
policy map for requests toA and a send policy map for responses.
Conversely, at the client, the configurationCc consists of a send
policy map for requests toA and a receive policy map for responses.
In general,C (L) generates request policy maps for each (action,
client principal, server principal) tuple, and response policy maps
for each (client principal, server principal) pair inL. We model
the configuration of the distributed system by the concatenation of
the client and server configurations. For our example linkL0, this
configuration is calledC0.

5.2 Embedding Security Goals
The configuration compiler,S(−,−) of Figure1, makes explicit

the security goals of a link as proof obligations in TulaFale, us-

ing specialevent messagesthat mark important operations made
by principals and key generators. Hence, before emitting a con-
structed envelope on httpChan, the generic sender of Section4.2
emitsbeginLog(a) to mark its intention. Similarly, the generic re-
ceiver emitsendLog(a) when it accepts an envelope as valid.

Informally, wheneverendLog(a) is emitted, we would expect
beginLog(a) to have been emitted, with matching arguments (a).
The arguments to these events are automatically extracted from link
descriptions, via the generated predicate linkAssert. (Crucially, this
extraction is independent from the lower-level policy maps imple-
mented in our scripts.)

The technical report [3] defines general rules for embedding our
security goals in TulaFale, including the clauses for linkAssert for
authenticity. Here, we define linkAssert for the request envelopes
of our example linkL0.

predicatelinkAssert(sid, rid:item, env:item, a:items) :−
hasUid(sid,sender), hasUid(rid,responder)
hasHeaderTo(env,Toitm,to),
hasHeaderAction(env,Actionitm,action),
hasHeaderMessageId(env,MessageIditm,id),
hasHeaderCreated(env,Createditm,t),
hasBody(env,bitm,body),
to = "http://bobspetshop.com/service.asmx",
action ="http://premium",
responderin ["BobsPetshop"],
a = [sender responder"Request" to action id timestamp body].

The seven hasXyz predicates collect the arguments recorded in the
event: two principal identifiers plus selected elements of the enve-
lope. The following three equations test to, action, and responder
against the parameters provided in the high-level link. If these tests
succeed, the arguments are returned as the last, a. Arguments are
similarly collected for the response envelopes ofL0, using a second
clause for linkAssert (the technical report has full details).

6. VERIFYING LINK-BASED SCRIPTS
We can now state the formal security properties checked by our

tools. Recall thatC (L) is the policy configuration generated from
a link specificationL, and thatS(C,L) is the TulaFale script (es-
sentially a pi calculus process, with some embedded assertions)
generated from a policy configurationC and a link specificationL.
Hence,C0 = C (L0) andS0 = S(C0,L0) are the policy configuration
and pi calculus process, respectively, for our example link.

Authentication and Adequacy Goals for Processes:

A processP is robustly safewhen, for any run in any context, if
endLog(a) occurs, then eitherbeginLog(a) orbeginLeak(u) with
[a = u @] previously occurred.
P is functionally adequate for awhen, for some run in some con-
text,endLog(a) occurs.

These observational properties have a direct security interpreta-
tion for processes modelling web services configurations since, by
construction, the emission of observed events (for instance, for ro-
bust safetybeginLog([u] @ ass),endLog([u] @ ass), andbegin
Leak(u)) are carefully controlled (for instance, they are emitted
only when a sender sends an envelope, a receiver accepts an enve-
lope, and the password generator leaks a password, respectively).

Continuing with our running exampleC0 andL0, our first theo-
rem illustrates how our tools can be used to verify the correctness
of a fixed policy configuration against a link specification.

THEOREM 1. The processS(C0,L0) is robustly safe, and func-
tionally adequate for someaof the form["BobsPetShop"

"Request"@] and ["BobsPetShop" "Response"@].

The proof is fully automated. All the theorems in this paper are
proved by invoking ProVerif on a generic desktop computer with a
3GHz Pentium 4 processor and 1GB of memory. For this theorem,
ProVerif takes around 3 minutes to prove the security goals for the
520 line generated TulaFale script.

Our proof technique can be extended to establish theorems on
general classes of policy configurations and link specifications. We
present two theorems in this direction, although we omit the more
complex scripts and the (human-proved) lemmas involved in their
proofs. While the automated part of the proof of Theorem2 takes
a few minutes, Theorem3 takes about ninety minutes.

The following formalizes the intuition thatall configurations gen-
erated from link specifications are safe:

THEOREM 2. For any link specification L, processS(C (L),L)
is robustly safe.

The next result covers the common case of remote principals
trusted to implement some unknown security policy. For instance,
they may use their signing keys to generate signatures requested in
arbitrary policies.

THEOREM 3. For any link specification L and configuration C
such that C andC (L) have the sameReceivepolicy maps, the pro-
cessS(C,L) is robustly safe.

This asserts: if server policies suffice to validate a link specifi-
cation, Send policies are immaterial for authenticity. Clearly, we
cannot hope to retain functional adequacy in this case. Dually, a
more general result on secrecy depends only on the Send policies.

7. EXTENDED SECURITY MODELS
In this section, we present extensions of the technical results in

Sections4, 5, and6. We present details on incorporating secrecy
and encrypted links, we explain how message correlation is en-
coded, and we give a logical refinement relation on policies.

7.1 Secrecy
The link language allows encrypted links that require that mes-

sage bodies in both directions be kept secret from the attacker. For
instance, consider the following encrypted variation of our example
link specificationL0.

L1 = [("http://bobspetshop.com/service.asmx",
["http://petshop/premium"],
Any, ["BobsPetShop"], Encrypted)]

The following configuration implements this link specification:

Preq = All[Integrity(X509,Req),
Confidentiality(X509("BobsPetShop"),[Body])]

Presp = All[Integrity(X509("BobsPetShop"),Resp)
Confidentiality(X509,[Body])]

Cc = [Send(A,Preq), Receive(Default,Presp)]
Cs = [Receive(A,Preq), Send(Default,Presp)]
C1 = C (L1) = Cc @Cs

Here, the request and response policies require the Body to be en-
crypted, and since username tokens do not support encryption, both
principals must use X.509 certificates.

The script generated from this link,S(C1,L1), extendsS(C0,L0)
in two ways. First, the send and receive policies are now translated
to predicates that also implement the encryption of the body. Sec-
ond, whenever the generic sender inputs a request envelope from
the attacker for recipient u, it may replace the body by a secret
name B after issuing the eventbeginLogS(u). The secrecy goal
is then that the attacker cannot capture or compute B unless u is
untrusted. A new predicate mkLinkEnvelope implements the body
replacement.

Secrecy Goal for Processes:

P preserves secrecywhen, for any run in any context where B does
not occur, if the context obtainsB, thenbeginLeak(u) andbegin
KnowsSecret(u) previously occurred.

The following theorem states that the policy configurationC1
generated fromL1 preserves the secrecy goals ofL1; it is automat-
ically proved by ProVerif in a few minutes.

THEOREM 4. The TulaFale script generated from L1 and C1
preserves the secrecy ofB.

We also establish the theorems of Section6 for C1 instead ofC0,
and prove that all link-generated configurations preserve secrecy.

7.2 Correlation
For request-response exchanges, we require an additional au-

thentication property. When the client accepts a response message
from the web service, we want to guarantee that this message was
generated in response to a particular earlier request. To formalize
this property, we use modified TulaFale scriptsS ′(C,L): instead
of generic senders and receivers, we model generic clients and ser-
vices. A generic client sends a request and then waits for a response
that matches the request. A generic service is symmetric.

As an example, we present the generic client forS ′(C0,L0):
processGenericClient() =
!in initChan (env);
in dbChan (cid);in dbChan (sid);
new freshid;
filter mkConformant(env,[cid],[sid],[freshid],outenv)→outenvin
filter linkAssert(cid,sid,env,aReq)→aReqin
beginLog(aReq);
out httpChan(outenv);

in httpChan(respenv);
filter isConformant(respenv,[sid],[cid],resp)→ respin
filter hasCorrelator(resp,freshid,cid)→ in
filter hasLinkAssert(sid,cid,resp,aResp)→aRespin
endLog(aResp);
endLogCorr(aReq,aResp)

As in GenericSender, the client accepts an envelope from the envi-
ronment and enforces the send policy on it by invoking the predi-
cate mkConformant. It then issuesbeginLog(aReq), where aReq
is the assertion for request messages, before sending the request
message out on httpChan. Then, the client process waits for the re-
sponse, checks that it conforms to a receive policy and that it is cor-
related to the request before issuing the eventsendLog(aResp) and
endLogCorr(aReq,aResp). The symmetric GenericService process
issuesbeginLogCorr(aReq,aResp) before generating the response.

Correlation Goal:

A processP correctly correlates requests and responseswhen, for
any run in any context, ifendLogCorr(a1,a2) occurs, then either
beginLogCorr(a1,a2) orbeginLeak(u) previously occurred with
a1 = u @ or a2 = u @ .

If no user secrets are leaked, then the key to correlation is checking
that the RelatesTo field of the response echoes the fresh MessageId
in the request. If insider attacks are allowed, however, this mecha-
nism does not suffice. So, we extend responses (in mkConformant,
isConformant) to additionally include and sign the user token used
to authenticate the request. The predicate hasCorrelator checks that
the response contains both the freshid and cid used in the request.

THEOREM 5. The processS ′(C0,L0) correctly correlates re-
quests and responses.

7.3 Towards a logical theory for Policies
One can treat security policies as logical formulas with integrity

and confidentiality assertions as atomic propositions, combined us-
ing conjunction and disjunction. This leads to a natural notion of
refinement: one policy refines another if any message that satisfies
the latter also satisfies the former. Such a refinement can be used to
develop rules for safely modifying policy configurations that have
been proved to be secure. For instance, we can establish that refin-
ing a link-generated receive policy preserves robust safety.

Compilation to TulaFale provides an ad hoc model of the logic:
we can check that the basic axioms hold, and can be pushed through
process configurations (for instance, comparing parallel composi-
tions of servers to disjunctions of policies); we can also exhibit
additional laws that hold in our model, for instance, authentication
without signature for username tokens, and transitivity of multiple
signatures sharing a fresh name.

Receiver Policy Refinement for Link-Based Safety:p⇒ q

We say thatp refinesq, written p⇒ q when, for all link specifica-
tion L and policy configurationC[] with a placeholder as a Receive
policy, if S(C[q],L) is safe, thenS(C[p],L) is also safe.

Similarly, for some given security goals, one can define a notion
of refinement for sender policies, and for policy configurations. Re-
finement provides an abstract way of extending our results to poli-
cies that are apparently more demanding. We give some sample
refinement properties, which can be established using logical re-
finement on TulaFale predicates generated for these policies.

Refinements of Receive Policies:

pol⇒ pol
pol1 ⇒ pol2 pol2 ⇒ pol3

pol1 ⇒ pol3

poli ⇒ OneOrMore[pol1, . . . ,polk]
∀i

∀i : pol⇒ poli
pol⇒ All[pol1, . . . ,polk] All[pol1, . . . ,polk] ⇒ poli

∀i

T ∈ {X509,Username}
Integrity(T(s),L)⇒ Integrity(T,L)

L′ ⊆ L
Integrity(t,L)⇒ Integrity(t,L′)

T ∈ {X509,Username}, H = Header(‘‘MessageId’’)
All[Integrity(T(s), [H]@L1),

Integrity(T(s), [H]@L2)] ⇒ Integrity(T(s), [H]@L1@L2)

The first two rules express reflexivity and transitivity of refinement,
while the next three encode disjunction and conjunction of policies.
The last three rules express refinement properties of the Integrity
assertion. Requiring a more specific token or signatures over more
message parts leads to a stronger receive policy. Requiring two sig-
natures that both sign the fresh message identifier is equivalent to
requiring a single signature that covers both sets of message parts.

Each of these rules is established by manual proofs about the cor-
responding process translations. As an example of the last refine-
ment rule, letC′ be the configuration formed by replacing the re-
sponse policy, Integrity(X509("BobsPetShop"),Resp), in C0 by:

All[Integrity(X509("BobsPetShop"),
[Header("MessageId"),Body]),

Integrity(X509("BobsPetShop"),
[Header("MessageId"),Header("From"),
Header("RelatesTo"),Header("Created")])]

THEOREM 6. S(C′,L0) is robustly safe.

8. CONCLUSIONS AND RELATED WORK
This paper makes two main contributions to the study of web

services security. The first is a formal semantics and theory of
SOAP security policies and configurations via the TulaFale script-
ing language. The second is the design of a simple high-level link
language to express intended security properties, plus tools to gen-
erate message-level WS-SecurityPolicy files from link descriptions
and to verify they correctly implement the intended security goals.

The tools build a formal model of a given SOAP configuration,
with an unbounded number of senders and receivers, and show
there are no vulnerabilities to XML rewriting attacks by an un-
bounded opponent. Inasmuch as WS-SecurityPolicy files directly
control security processing for SOAP messages (as in WSE, for
instance), our tools can thus verify properties of actual deploy-
ments. Although verification does not apply to the system libraries
that interpret policies at run-time, it does detect or rule out errors
in the policy files generated or customized by users for particular
SOAP installations. Our tools would have caught errors we found
by careful manual inspection, such as omission to sign or check
significant headers, particularly WS-Addressing headers, in actual
policies written for use with WSE.

Although there are several tools to check security policies at
lower layers, such as IPSec [13], to the best of knowledge, ours
are the first to check security policies at the SOAP layer.

There are other recent tools to generate WS-SecurityPolicy files
from more abstract descriptions. WSE [15] itself includes a secu-
rity settings wizard that gathers data analogous to our link speci-
fications with a UI and from this generates policy files. Our tools
demonstrate the feasibility of checking the correctness of the poli-
cies generated by this wizard, although we have not attempted this
systematically. Tatsubori, Imamura, and Nakamura [21] describe
another graphical tool for generating policies. They argue that users
should specify policies in terms of application requirements (such
as message flows), and that these should be separated from plat-
form capabilities (such as availability of a PKI). Hence, they pro-
pose separate application and platform models, from which they
generate WS-SecurityPolicy files. Their work places more empha-
sis on human usability issues than ours, but does not include any
formal verification of generated policies.

Several recent systems [19, 16, 14, 20] generate implementa-
tion code from abstract protocol descriptions in Dolev-Yao [11]
formalisms such as strand spaces, CAPSL, and the spi-calculus.
Since the abstract protocol descriptions can be formally verified,
confidence in the Java code generated by these systems is greater
than in a handwritten implementation. Our configuration compiler
works in the opposite direction from these systems, in that it gen-
erates a Dolev-Yao model (TulaFale) from implementation code.
An advantage of this direction is that end users get the benefits of
formal verification without needing to rewrite their protocols in a
new language. (With our tools, end users still need to write security
goals, either directly in TulaFale, or via our link language.)

Zheng, Chong, Myers, and Zdancewic [24] generate distributed
cryptographic protocols to realize type-based integrity and confi-
dentiality policies expressed via an extension of Java’s type system.
Their approach, rather different to ours, also avoids handwritten
cryptographic protocols.

Web services security will certainly evolve; the current specifica-
tions are partly inadequate and their connection to a more abstract
security management layer is delicate. Flexible policy languages
seem useful and necessary as web services needs and architectures
develop. Still, flexibility can be the enemy of security, and we may
hope that standard policies and practices can be agreed. Our se-
mantics and tools should help along the way.

Acknowledgements. Bruno Blanchet implemented several exten-
sions to ProVerif needed for this work. Riccardo Pucella proto-
typed a first compiler from policies to TulaFale during an intern-
ship. Tuomas Aura, Daniel Stieger, and the anonymous reviewers
made useful comments on earlier versions of the paper.

9. REFERENCES
[1] M. Abadi and C. Fournet. Mobile values, new names, and se-

cure communication. InProceedings of the 28th ACM Sympo-
sium on Principles of Programming Languages (POPL’01),
pages 104–115, 2001.

[2] K. Bhargavan, C. Fournet, and A. D. Gordon. A seman-
tics for web services authentication. In31st ACM Symposium
on Principles of Programming Languages (POPL’04), pages
198–209, 2004. An extended version appears as Microsoft
Research Technical Report MSR–TR–2003–83.

[3] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. Technical Report
MSR–TR–2004–84, Microsoft Research, 2004.

[4] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. InInternational
Symposium on Formal Methods for Components and Objects
(FMCO’03), LNCS. Springer, 2004. To appear.

[5] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. InProceedings of the 14th IEEE Com-
puter Security Foundations Workshop, pages 82–96. IEEE
Computer Society Press, 2001.

[6] B. Blanchet. From secrecy to authenticity in security proto-
cols. InProceedings of the 9th International Static Analysis
Symposium (SAS’02), volume 2477 ofLecture Notes in Com-
puter Science, pages 342–359. Springer-Verlag, 2002.

[7] D. Box, F. Curbera, et al.Web Services Addressing (WS-
Addressing), Aug. 2004. W3C Member Submission, athttp:

//www.w3.org/Submission/ws-addressing/.
[8] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langwor-

thy, A. Nadalin, N. Nagaratnam, M. Nottingham, C. von
Riegen, and J. Shewchuk. Web services policy framework
(WS-Policy), May 2003.

[9] D. Box, M. Hondo, C. Kaler, H. Maruyama, A. Nadalin,
N. Nagaratnam, P. Patrick, C. von Riegen, and
J. Shewchuk. Web services policy assertions language
(WS-PolicyAssertions), May 2003.

[10] G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk,
C. Kaler, H. Maruyama, N. Nagaratnam, A. Nash,
R. Philpott, H. Prafullchandra, J. Shewchuk, E. Waingold, and
R. Zolfonoon. Web services security policy language (WS-
SecurityPolicy), Dec. 2002.

[11] D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT–29(2):198–
208, 1983.

[12] A. D. Gordon and R. Pucella. Validating a web service secu-
rity abstraction by typing. InProceedings of the 2002 ACM
workshop on XML Security, pages 18–29. ACM Press, 2002.

[13] J. D. Guttman and A. L. Herzog. Rigorous automated network
security management.International Journal of Information
Security. To appear.

[14] S. Lukell, C. Veldman, and A. C. M. Hutchison. Automated
attack analysis and code generation in a multi-dimensional se-
curity protocol engineering framework. InSouthern African
Telecommunication Networks and Applications Conference
(SATNAC), 2003.

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

[15] Microsoft Corporation. Web Services Enhancements
(WSE) 2.0, 2004. At http://msdn.microsoft.com/

webservices/building/wse/default.aspx.
[16] F. Muller and J. Millen. Cryptographic protocol generation

from CAPSL. Technical Report SRI–CSL–01–07, SRI, 2001.
[17] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.

OASIS Web Services Security: SOAP Message Security
1.0 (WS-Security 2004), Mar. 2004. OASIS Standard
200401, at http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0.

pdf.
[18] R. Needham and M. Schroeder. Using encryption for au-

thentication in large networks of computers.Commun. ACM,
21(12):993–999, 1978.

[19] A. Perrig, D. Song, and D. Phan. AGVI – automatic gener-
ation, verification, and implementation of security protocols.
In 13th Conference on Computer Aided Verification (CAV),
LNCS, pages 241–245. Springer, 2001.

[20] D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic cryp-
tographic protocol Java code generation from spi calculus. In
18th International Conference on Advanced Information Net-
working and Applications (AINA 2004), volume 1, pages 400–
405, 2004.

[21] M. Tatsubori, T. Imamura, and Y. Nakamura. Best practice
patterns and tool support for configuring secure web ser-
vices messaging. InInternational Conference on Web Ser-
vices (ICWS’04), pages 244–251, 2004.

[22] W3C. XML Path Language (XPath) Version 1.0, 1999. W3C
Recommendation, athttp://www.w3.org/TR/xpath.

[23] W3C. SOAP Version 1.2, 2003. W3C Recommendation, at
http://www.w3.org/TR/soap12.

[24] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed sys-
tems. InIEEE Computer Society Symposium on Research in
Security and Privacy, pages 236–250, 2003.

APPENDIX

A. SAMPLE POLICY CONFIGURATION
The following is the XML policy configuration corresponding to

C1 = C (L1). The first two policy maps form the client configuration
Cc while the last two form the service configurationCs. The overall
format is based on the config files of WSE while the policy format
conforms to WS-SecurityPolicy.

<PolicyMappings>
<SendPolicy>
<To>http://bobspetshop.com/service.asmx</To>
<Action>http://premium</Action>
<Policy Id="ClientToServer1">
<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShop</SubjectName>

</Claims></SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>

</Confidentiality>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>

</SecurityToken></TokenInfo>

<MessageParts>Body() Header("To") Header("Action")
Header("MessageId") Header("Created")

</MessageParts></Integrity>
</All></Policy></SendPolicy>

<ReceivePolicy>
<To>default</To>
<Action>default</Action>
<Policy Id="ServerToClient2">
<All>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShop</SubjectName>

</Claims></SecurityToken></TokenInfo>
<MessageParts>Body() Header("From")

Header("RelatesTo") Header("MessageId")
Header("Created")</MessageParts></Integrity>

<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>

</SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>

</Confidentiality></All></Policy></ReceivePolicy>
<ReceivePolicy>
<To>http://bobspetshop.com/service.asmx</To>
<Action>http://premium</Action>
<Policy Id="ClientToServer3">
<All>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>

</SecurityToken></TokenInfo>
<MessageParts>Body() Header("To") Header("Action")

Header("MessageId") Header("Created")
</MessageParts></Integrity>

<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShop</SubjectName>

</Claims></SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>

</Confidentiality></All></Policy></ReceivePolicy>
<SendPolicy>
<To>default</To>
<Action>default</Action>
<Policy Id="ServerToClient4">
<All>
<Confidentiality>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>

</SecurityToken></TokenInfo>
<MessageParts>Body()</MessageParts>

</Confidentiality>
<Integrity>
<TokenInfo>
<SecurityToken>
<TokenType>X509v3</TokenType>
<Claims>
<SubjectName>BobsPetShop</SubjectName>

</Claims></SecurityToken></TokenInfo>
<MessageParts>Body() Header("From")

Header("RelatesTo") Header("MessageId")
Header("Created")</MessageParts></Integrity>

</All></Policy></SendPolicy></PolicyMappings>

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/soap12

	Introduction
	Security Policies for Web Services (Review)
	Web Services and their Configuration
	WS-Policy and WS-SecurityPolicy
	Policy Maps (in WSE)
	Discussion

	Architecture of Policy Tools
	TulaFale, a Security Tool for Web Services
	Compiling Policies to TulaFale Scripts
	Generating Security Goals and Policies for Abstract Configurations

	From Policies to Processes
	Principals, Trust, and Insider Attacks
	Generic Senders and Receivers
	Compiling Policies to Predicates

	From Links to Policies
	Generating Policy Configurations
	Embedding Security Goals

	Verifying Link-Based Scripts
	Extended Security Models
	Secrecy
	Correlation
	Towards a logical theory for Policies

	Conclusions and Related Work
	REFERENCES -9pt
	Sample Policy Configuration

