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1. INTRODUCTION

The design and implementation of code involving cryptography remains dangerously dif-
ficult. The problem is to verify that an active attacker, possibly with access to some
cryptographic keys but unable to guess other secrets, cannot thwart security goals such
as authentication and secrecy [Needham and Schroeder 1978]; it has motivated a serious
research effort on the formal analysis of cryptographic protocols, starting with Dolev and
Yao [1983] and eventually leading to effective verification tools. Hence, it is now feasible
to verify abstract models of protocols against demanding threat models.

Still, as with many formal methods, a gap remains between protocol models and their
implementations. Distilling a cryptographic model is delicate and time consuming, so that
verified protocols tend to be short and to abstract many potentially troublesome details of
implementation code. At best, the model and its implementation are related during tedious
manual code reviews. Even if, at some point, the model faithfully covers the details of the
protocol, it is hard to keep it synchronized with code as it is deployed and used. Hence,
despite verification of the abstract model, security flaws may appear in its implementation.

Our thesis is that to verify production code of security protocols against realistic threat
models is an achievable research goal. The present paper advances in this direction by
contributing a new approach to deriving automatically verifiable models from code. We
demonstrate its application, if not to production code, at least to code constituting a work-
ing reference implementation—one suitable for interoperability testing with efficient pro-
duction systems but itself optimized for clarity not performance.
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Our prototype tools analyze cryptographic protocols written in F# [Microsoft Corpo-
ration 2005], a dialect of ML. F# is a good fit for our purposes: it has a simple formal
semantics; its datatypes offer a convenient way of programming operations on XML, im-
portant for our motivating application area, web services security. Semantically, F# is not
so far from languages like Java or C#, and we expect our techniques could be adapted to
such languages. We run F# programs on the Common Language Runtime (CLR), and rely
on the .NET Framework libraries for networking and cryptographic functions.

The diagram above describes our new language-based approach, which derives verifi-
able models from executable code. We prefer not to tackle the converse problem, turning a
formal model into code, as, though feasible, it amounts to language design and implemen-
tation, which generally is harder and takes more engineering effort than model extraction
from an existing language. Besides, modern programming environments provide better
tool support for writing code than for writing models.

We strive to share most of the code, syntactically and semantically, between the im-
plementation and its model. Our approach is modular, as illustrated by the diagram: we
write application code defining protocols against restrictive typed interfaces defining the
services exposed by the underlying cryptographic, networking, and other libraries. Further,
we write distinct versions of library code only for a few core interfaces, such as those fea-
turing cryptographic algorithms. For example, cryptographic operations are on an abstract
type bytes. We provide dual concrete and symbolic implementations of each operation.
For instance, the concrete implementation of bytes is simply as byte arrays, subject to ac-
tual cryptographic transforms provided by the .NET Framework. On the other hand, the
symbolic implementation defines bytes as algebraic expressions subject to abstract rewrit-
ing in the style of Dolev and Yao, and assumed to be a safe abstraction of the concrete
implementation.

We formalize the active attacker as an arbitrary program in our source language, able to
call interfaces defined by the application code and also the libraries for cryptography and
networking. Our verification goals are to show secrecy and authentication properties in the
face of all such attackers. Accordingly, we can adapt our threat model by designing suitable
interfaces for the benefit of the attacker. The application code implements functions for
each role in the protocol, so the attacker can create multiple instances of, say, initiators and
responders, as well as monitor and send network traffic and, in some models, create new
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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principals and compromise some of their credentials.
Given dual implementations for some libraries, we can compile and execute programs

both concretely and symbolically. This supports the following tasks:

(1) To obtain a reference implementation, we execute application code against concrete
libraries. We use the reference implementation for interoperability testing with some
other available, black-box implementation. Experimental testing is essential to con-
firm that the protocol code is functionally correct, and complete for at least a few basic
scenarios. (Otherwise, it is surprisingly easy to end up with a model that does not re-
flect some problematic features, such as for instance ambiguous message formats.)

(2) To obtain a symbolic prototype, we execute the same application code against symbolic
libraries. This allows basic testing and debugging, especially for the expected message
formats. Though this guarantees neither wire format interoperability nor any security
properties, it is pragmatically useful during the initial stages of code development.

(3) To perform formal verification, we run our model extraction tool, called fs2pv, to
derive a detailed formal model from the application code and symbolic libraries. Our
models are in a variant of the pi calculus [Milner 1999; Abadi and Fournet 2001]
accepted by ProVerif [Blanchet et al. 2005; Blanchet 2001]. ProVerif compiles our
models to logical clauses and runs a resolution semi-algorithm to prove properties
automatically. In case a security property fails, ProVerif can often construct an explicit
attack [Allamigeon and Blanchet 2005].

The fs2pv/ProVerif tool chain is applicable in principle to a broad range of cryptographic
protocols, but our motivating examples are those based on the WS-Security [OASIS 2004]
standard for securing SOAP [W3C 2003] messages sent to and from XML web services.
WS-Security prescribes how to sign and encrypt parts of SOAP messages. Environments
such as Apache WSS4J [Apache Software Foundation 2006], IBM WebSphere [IBM Cor-
poration 2006], Microsoft Web Services Enhancements (WSE) [Microsoft Corporation
2004] and Windows Communication Foundation (WCF) [Microsoft Corporation 2006],
provide tools and libraries for building web services that are secured via the mechanisms
of WS-Security and related specifications. Previous analyses of pi calculus models ex-
tracted from WSE by hand have uncovered attacks [Bhargavan et al. 2005; Bhargavan
et al. 2004], but there has been no previous attempt to check conformance between these
models and code automatically. To test the viability of our new approach, we have devel-
oped a series of reference implementations of simple web services protocols. They are both
tested to be interoperable with both WSE and WCF and verified via our tool chain. The
research challenge in developing these implementations is to confront at once the difficulty
of processing standard wire formats, such as WS-Security, and the difficulty of extracting
verifiable models from code.

Our model extraction tool, fs2pv, accepts an expressive first-order subset of F# we dub F,
with primitives for communications and concurrency. It has a simple formal semantics
facilitating model extraction, but disallows higher-order functions and some imperative
features. The application code and the symbolic libraries must be within F, but the concrete
libraries are in unrestricted F#, with calls to the platform libraries. Formally, we define the
attacker to be an arbitrary F program well formed with respect to a restrictive attacker
interface implemented by the application code. The attacker can only interact with the
application code via this interface, which is supplied explicitly to the model extraction tool
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along with the application code. Although we compile to the pi calculus for verification, the
properties proved can be understood independently of the pi calculus. We prove theorems
to justify that verification with ProVerif implies properties of source programs defined in
terms of F. The principal difficulty in the proofs arises from relating the attacker models at
the two levels.

Since security properties within the Dolev-Yao model are undecidable, and we rely on an
automatic verifier, there is correct code within F that fails to verify. A cost of our method,
then, is that we must adopt a programming discipline within F suitable for automatic ver-
ification. For example, we avoid certain uses of recursion. The initial performance results
for our prototype tools are encouraging, as much of the performance is determined by
the concrete libraries; nonetheless, there is a tension between efficiency of execution and
feasibility of verification. To aid the latter, fs2pv chooses between a range of potential se-
mantics for each F function definition (based on abstractions, rewrite rules, relations, and
processes).

Our method relies on explicit interfaces describing low-level cryptographic and com-
munication libraries, and on some embedded specifications describing the intended secu-
rity properties. Model extraction directly analyzes application code using these interfaces
plus the code of the symbolic libraries, while ignoring the code of the concrete libraries.
Hence, our method can discover bugs in the application code, but not in the trusted concrete
libraries.

At present, we have assessed our method only on new code written by ourselves in this
style. Many existing protocol implementations rely on well defined interfaces providing
cryptographic and other services, so we expect our method will adapt to existing code
bases, but this remains future work.

In general, the derivation of security models from code amounts to translating the security-
critical parts of the code and safely abstracting the rest. Given an arbitrary program, this
task can hardly be automated—some help from the programmer is needed, at least to assert
the intended security properties. Further work may discover how to compute safe abstrac-
tions directly from the code of concrete libraries. For now, we claim that the benefit of
symbolic verification of a reference implementation is worth the cost of adding some secu-
rity assertions in application code and adopting a programming discipline compatible with
verification.

In summary, our main contributions are as follows:

(1) An architecture and language semantics to support extraction of verifiable formal mod-
els from implementation code of security protocols.

(2) A prototype model extractor fs2pv that translates from F to ProVerif. This tool is
one of the first to extract verifiable models from working protocol implementations.
Moreover, to the best of our knowledge, it is the first to extract models from code
that uses a standard message format (WS-Security) and hence interoperates with other
implementations (WSE).

(3) Theorems justifying model extraction: low-level properties proved by ProVerif of a
model extracted by fs2pv imply high-level properties expressed in terms of F.

(4) A detailed case study of the implementation and verification of a web services security
protocol. To the best of our knowledge, the thousand line pi calculus process we verify
is the largest model of a cryptographic protocol to be extracted from code. We also
provide interoperability results and performance comparisons; as a benchmark, our
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implementations pass interoperability tests with at least two production implementa-
tions, Microsoft WSE and WCF. Our implementation is modular, so that most code is
expressed in reusable libraries that give a formal semantics to informal web services
security specifications.

Section 2 informally introduces many ideas of the paper in the context of a simple mes-
sage authentication protocol. Section 3 defines our source language, F, as a subset of F#,
and formalizes our desired security properties. Section 4 outlines our techniques for model
extraction, states our main theorems, and presents some small examples. Section 5 sum-
marizes our experience in writing and verifying code for web services security protocols;
as a case study, it details the implementation and verification of an X.509 mutual authenti-
cation protocol. Section 6 concludes. Appendix A introduces an observational equivalence
for our pi calculus. Appendix B develops the proof of our safety theorem.

Abridged versions of this work appear in conference [Bhargavan et al. 2006a; Bhargavan
et al. 2006b] and summer school [Bhargavan et al. 2007a] proceedings. A companion
report [Bhargavan et al. 2007b] provides additional technical details, including omitted
proofs. The fs2pv tool and all libraries and example code described in this paper are
available online [Microsoft Corporation 2007].

2. A SIMPLE MESSAGE AUTHENTICATION PROTOCOL

We illustrate our method on a very simple, ad hoc protocol example. Next, we describe the
structure of the application code implementing client and server roles, and then describe
how to derive a concrete implementation, a symbolic prototype, and a formal model suit-
able for verification. Section 4.4 continues the example, and provides complete listings
for its source code and its extracted pi calculus model. Section 5 discusses more involved
examples.

The protocol. Our example protocol has two roles, a client that sends a message, and
a server that receives it. For the sake of simplicity, we assume that there is only one
principal A acting as a client, and only one principal B acting as a server. (Further examples
support arbitrarily many principals in each role.)

Our goal here is that the server authenticate the message, even in the presence of an
active attacker. To this end, we rely on a password-based message authentication code
(MAC). The protocol consists of a single message; it may be informally written as

A→ B : HMACSHA1{nonce}[pwdA | text] | RSAEncrypt{pkB}[nonce] | text

where HMACSHA1 and RSAEncrypt represent keyed cryptographic algorithms and ‘|’
stands for message concatenation. The client acting for principal A sends a single message
text to the server acting for B. The client and server share A’s password pwdA, and the
client knows B’s public key pkB. To authenticate the message text, the client uses the one-
way keyed hash algorithm HMAC-SHA1 to bind the message with pwdA and a freshly
generated value nonce. Since the password is likely to be a weak secret, that is, a secret
with low entropy, it may be vulnerable to offline dictionary attacks if the MAC, the message
text, and the nonce are all known. To protect the password from such guessing attacks, the
client uses the RSA algorithm to encrypt the nonce under B’s public key.

Application code. Given interfaces Crypto, Net, and Prins defining cryptographic prim-
itives, communication operations, and access to a database of principal identities, our ver-
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ifiable application code is a module that implements the following typed interface.

pkB: rsa key
client: str→unit
server: unit→unit

The value pkB is the public encryption key for the server, with type rsa key. The func-
tions client and server define the two roles of the protocol. Calling client with a string
parameter should send a single message to the server, while calling server creates an in-
stance of the server role that awaits a single message. In F#, str→unit is the type of
functions from the type str, which is an abstract type of strings defined by the Crypto in-
terface, to the empty tuple type unit. The Crypto interface also provides the abstract type
rsa key of RSA keys.

The exported functions client and server rely on the following functions to manipulate
messages.

let mac nonce password text =
Crypto.hmacsha1 nonce

(concat (utf8 password) (utf8 text))

let make text pk password =
let nonce = mkNonce() in
(mac nonce password text,
Crypto.rsa encrypt pk nonce, text)

let verify (m,en,text) sk password =
let nonce = Crypto.rsa decrypt sk en in
if not (m = mac nonce password text)
then failwith "bad MAC"

The first function, mac, takes three arguments—a nonce, a shared password, and the
message text—and computes their joint cryptographic hash using some implementation of
the HMAC-SHA1 algorithm provided by the cryptographic library. As usual in dialects of
ML, types may be left implicit in code, but they are nonetheless verified by the compiler;
mac has type bytes→str→str→bytes. The functions concat and utf8 provided by Crypto
perform concatenation of byte arrays and an encoding of strings into byte arrays.

The other two functions define message processing, for senders and receivers, respec-
tively. Function make creates a message: it generates a fresh nonce, computes the MAC,
and also encrypts the nonce under the public key pk of the intended receiver, using the
rsa encrypt algorithm. The resulting message is a triple comprising the MAC, the en-
crypted nonce, and the text. Function verify performs the converse steps: it decrypts the
nonce using the private key sk, recomputes the MAC and, if the resulting value differs from
the received MAC m, throws an exception (using the failwith primitive).

Although fairly high-level, our code includes enough details to be executable, such as
the details of particular algorithms, and the necessary utf8 conversions from strings (for
password and text) to byte arrays.

In the following code defining protocol roles, we rely on events to express intended
security properties. Events roughly correspond to assertions used for debugging purposes,
and they have no effect on the program execution. Here, we define two kinds of events,
Send(text) to mark the intent to send a message with content text, and Accept(text) to mark
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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the acceptance of text as genuine. Accordingly, client uses a primitive function log to
log an event of the first kind before sending the message, and server logs an event of the
second kind after verifying the message. Hence, if our protocol is correct, we expect every
Accept(text) event to be preceded by a matching Send(text) event. Such a correspondence
between events is a common way of specifying authentication.

The client code relies on the network address of the server, the shared password, and the
server’s public key:

let address = S "http://server.com/pwdmac"
let pwdA = Prins.getPassword(S "A")
let pkB = Prins.getPublicKey(S "B")

type Ev = Send of str | Accept of str

let client text =
log(Send(text));
Net.send address (marshall (make text pkB pwdA))

Here, the function getPassword retrieves A’s password from the password database, and
getPublicKey extracts B’s public key from the X.509 certificate database. The function S
is defined by Crypto; the expression S "A", for example, is an abstract string representing
the constant "A". The function client then runs the protocol for sending text; it builds the
message, then uses Net.send, a networking function that posts the message as an HTTP
request to address.

Symmetrically, the function server attempts to receive a single message by accepting a
message and verifying its content, using B’s private key for decryption.

let skB = Prins.getPrivateKey(S "B")
let server () =

let m,en,text = unmarshall (Net.accept address) in
verify (m,en,text) skB pwdA; log(Accept(text))

The functions marshall and unmarshall serialize and deserialize the message triple—the
MAC, the encrypted nonce, and the text—as a string, used here as a simple wire format.
(We present an example of the resulting message below.) These functions are also part of
the verified application code; we omit their details.

Concrete and symbolic libraries. The application code listed above makes use of a
Crypto library for cryptographic operations, a Net library for network operations, and a
Prins library offering access to a principal database. The concrete implementations of these
libraries are F# modules containing functions that are wrappers around the corresponding
platform (.NET) cryptographic and network operations.

To obtain a complete symbolic model of the program, we also develop symbolic im-
plementations of these libraries as F# modules with the same interfaces. These symbolic
libraries are within the restricted subset F defined in Section 3; they rely in turn on a small
module Pi defining name creation, channel-based communication, and concurrency in the
style of the pi calculus. Functions Pi.send and Pi.recv allow message passing on channels,
functions Pi.name and Pi.chan generate fresh names and channels, and a function Pi.fork
runs its function argument in parallel. The members of Pi are primitive in the semantics
of F. The Pi module is called from the symbolic libraries during symbolic evaluation and
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module Crypto // concrete code in F#
open System.Security.Cryptography
type bytes = byte[]
type rsa key = RSA of RSAParameters
...
let rng = new RNGCryptoServiceProvider ()
let mkNonce () =

let x = Bytearray.make 16 in
rng.GetBytes x; x

...
let hmacsha1 k x =

new HMACSHA1(k).ComputeHash x
...
let rsa = new RSACryptoServiceProvider()
let rsa keygen () = ...
let rsa pub (RSA r) = ...
let rsa encrypt (RSA r) (v:bytes) = ...
let rsa decrypt (RSA r) (v:bytes) =

rsa.ImportParameters(r);
rsa.Decrypt(v,false)

module Crypto // symbolic code in F
type bytes =
| Name of Pi.name
| HmacSha1 of bytes ∗ bytes
| RsaKey of rsa key
| RsaEncrypt of rsa key ∗ bytes
...

and rsa key = PK of bytes | SK of bytes
...
let freshbytes label = Name (Pi.name label)
let mkNonce () = freshbytes "nonce"
...
let hmacsha1 k x = HmacSha1(k,x)
...
let rsa keygen () = SK (freshbytes "rsa")
let rsa pub (SK(s)) = PK(s)
let rsa encrypt s t = RsaEncrypt(s,t)
let rsa decrypt (SK(s)) e = match e with
| RsaEncrypt(pke,t) when pke = PK(s)→ t
| → failwith "rsa_decrypt failed"

Table I. Two implementations of the Crypto interface

formal verification; it is not called directly from application code and plays no part in the
concrete implementation.

Table I shows the two implementations of the Crypto interface. The concrete imple-
mentation defines bytes as primitive arrays of bytes, and essentially forwards all calls to
standard cryptographic libraries of the .NET platform. In contrast, the symbolic imple-
mentation defines bytes as an algebraic datatype, with symbolic constructors and pattern
matching for representing cryptographic primitives. This internal representation is acces-
sible only in this library implementation. For instance, hmacsha1 is implemented as a
function that builds an HmacSha1(k,x) value; since no inverse function is provided, this
abstractly defines a perfect, collision-free one-way function that preserves the secrecy of its
arguments. More interestingly, RSA public key encryptions are represented by RsaEncrypt
values, decomposed only by a function rsa decrypt that can verify that the valid decryption
key is provided along with the encrypted value.

The symbolic implementation encodes strong but standard assumptions, in the style of
Dolev and Yao. Such assumptions are commonly made in automated protocol analyses (in
particular in ProVerif [Blanchet 2001]). As usual, our verification results assume that this
model is a safe abstraction of concrete cryptography. One may also adapt the symbolic
implementation to verify protocols under different assumptions. For instance, one may
model hmacsha1 as a function that does not preserve the secrecy of its second argument,
or rsa decrypt as a function that returns a plaintext for any input.

The concrete implementation of Net contains functions, such as send and accept, that call
into the platform’s HTTP library (System.Net.WebRequest), whereas the symbolic imple-
mentation of these functions simply enqueues and dequeues messages from a shared buffer
implemented with the Pi module as a channel. We outline the symbolic implementation of
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Net below.

module Net // symbolic code in F
...
let httpchan = Pi.chan()
let send address msg =

Pi.send httpchan (address,msg)
let accept address =

let (addr,msg) = Pi.recv httpchan in
if addr = address then msg else ...

The function send adds a message to the channel httpchan and the function accept re-
moves a message from the channel.

In this introductory example, we have a fixed population of two principals, so the values
for A’s password and B’s key pair can simply be retrieved from the third interface Prins:
the concrete implementation of Prins binds them to constants; its symbolic implementation
binds them to fixed names generated by calling Pi.name. In general, a concrete implemen-
tation would retrieve keys from the operating system key store, or prompt the user for a
password. The symbolic version implements a database of passwords and keys using a
channel kept hidden from the attacker.

The full code for our symbolic and concrete libraries is available as part of the fs2pv
distribution [Microsoft Corporation 2007].

Next, we describe how to build both a concrete reference implementation and a symbolic
prototype, in the sense of Section 1.

Concrete execution. To test that the protocol runs correctly, we run the F# compiler on
the F application code, the concrete F# implementations of Crypto, Net, and Prins, together
with the following top-level F# code to obtain a single executable, say run. Depending on
its command line argument, this executable runs in client or server mode:

do match Sys.argv.(1) with
| "client"→client (S Sys.argv.(2))
| "server"→server ()
| →printf "Usage: run client txt\n";

printf " or: run server\n"

The library function call Sys.argv.(n) returns the nth argument on the command line.
As an example, we can execute the command run client Hi on some machine, execute
run server on some other machine that listens on address, and observe the protocol run
to completion. This run of the protocol involves our concrete implementation of (HTTP-
based) communications sending and receiving an encoded message string.

Symbolic execution. To experiment with the protocol code symbolically, we run the F#
compiler on the F application code, the symbolic F implementations of Crypto, Net, and
Prins, and the F# implementation of the Pi interface, together with the following top-level
F code, that conveniently runs instances of the client and of the server within a single
executable.

do Pi.fork (fun()→ client (S "Hi"))
do server ()

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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The communicated message prints as follows

HMACSHA1{nonce3}[pwd1 | ’Hi’] | RSAEncrypt{PK(rsa secret2)}[nonce3] | ’Hi’

where pwd1, rsa secret2, and nonce3 are the symbolic names freshly generated by the
Pi module. This message trace reveals the structure of the abstract byte arrays in the
communicated message, and hence is more useful for debugging than the concrete message
trace. We have found it useful to test application code by symbolic execution (and even
symbolic debugging) before testing them concretely on a network.

Modelling the opponent. We introduce our language-based threat model for protocols
developed in F. (Section 3 describes the formal details.)

Let S be the F program that consists of the application code plus the symbolic libraries.
The program S, which largely consists of code shared with the concrete implementation,
constitutes our formal model of the protocol.

Let O be any F program that is well formed with respect to the interface exported by the
application code (in this case, the value pkB and the functions client and server), plus the
interfaces Crypto and Net. By well formed, we mean that O only uses external values and
calls external functions explicitly listed in these interfaces. Moreover, O can call all the
operations in the Pi interface, as these are primitives available to all F programs. We take
the program O to represent a potential attacker on the formal model S of the protocol, a
counterpart to an active attacker on a concrete implementation. (Treating an attacker as an
arbitrary F program develops the idea of an attacker being an arbitrary parallel process, as
in the spi calculus [Abadi and Gordon 1999].)

Giving O access to the Crypto and Net interfaces, but not Prins, corresponds to the Dolev
and Yao [1983] model of an attacker able to perform symbolic cryptography, and monitor
and send network traffic, but unable to access principals’ credentials directly. In particular,
Net.send enables the attacker to send any message to the server while Net.accept enables
the attacker to intercept any message sent to the server. The functions Crypto.rsa encrypt
and Crypto.rsa decrypt enable encryption and decryption with keys known to the attacker;
Crypto.rsa keygen and Crypto.mkNonce enable the generation of fresh keys and nonces;
Crypto.hmacsha1 enables MAC computation.

Giving O access to client and server allows it to create arbitrarily many instances of pro-
tocol roles, while access to pkB lets O encrypt messages for the server. (We can enrich the
interface to give the opponent dynamic access to the secret credentials of some principals,
and to allow the dynamic generation of arbitrarily many principal identities, and still prove
security goals via ProVerif.) Since pwdA, skB, and log are not included in the attacker
interface, the attacker has no direct access to the protocol secrets and cannot log events
directly.

Formal verification aims to establish secrecy and authentication properties for all pro-
grams S O assembled from the given system S and any attacker program O.

The message authentication property of our example protocol is expressed as a corre-
spondence [Woo and Lam 1993] between events logged by code within S. For all O, we
want that in every run of S O, every Accept event is preceded by a corresponding Send
event. In our syntax (based on that of ProVerif), we express this correspondence assertion
as:

query ev:Accept(x)⇒ ev:Send(x)
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Syntactic secrecy properties, such as the secrecy of private keys, can also be expressed
as correspondences. For all O, we want that in every run of S O, skB is never obtained by
the opponent. We write this property as the correspondence:

query attacker:skB⇒ ev:Unreachable()

where Unreachable() represents an event that can never occur; hence, this query is true if
and only if skB may never be obtained by the opponent.

Formal verification. We can check correspondences at runtime during any particular
symbolic run of the program; the more ambitious goal of formal verification is to prove
them for all possible runs and attackers. To do so, we run our model extractor fs2pv on
the F application code, the symbolic F implementations of Crypto, Net, and Prins, and
the attacker interface as described above. The result is a pi calculus script with embedded
correspondence assertions suitable for verification with ProVerif. In the simplest case, F
functions compile to pi calculus processes, while the attacker interface determines which
names are published to the pi calculus attacker. For our protocol, ProVerif immediately
succeeds, proving both message authentication and secrecy of the server’s private key:

RESULT ev:Accept(x)⇒ ev:Send(x) is true
RESULT attacker:skB[]⇒ ev:Unreachable() is true.

Conversely, consider for instance a variant of the protocol where the MAC computation
does not actually depend on the text of the message—essentially transforming the MAC
into a session cookie:

let mac nonce password text = hmacsha1 nonce
(concat (utf8 password) (utf8 (S "cookie")))

For the resulting script, ProVerif automatically finds and reports an active attack, whereby
the attacker intercepts the client message and substitutes any text for the client’s text in the
message. Experimentally, we can confirm the attack found in the analysis, by writing in F
an instance of the attacker program O that exploits our interface. Here, the attack may be
written:

do fork(fun()→ client (S "Hi"));
let (nonce, mac, ) = unmarshall (Net.accept address) in
fork(fun()→ server());
Net.send address (marshall (nonce, mac, S "Foo"))

This code first starts an instance of the client, intercepts its message, starts an instance
of the server, and forwards an amended message to it. Experimentally, we observe that
the attack succeeds, both concretely and symbolically. At the end of those runs, two
events Send "Hi" and Accept "Foo" have been emitted, and our authentication query
fails. Once the attack is identified and the protocol corrected, this attacker code may be
added to the test suite for the protocol.

We also verify a weak secrecy property for our example protocol. Via ProVerif, as
explained by Blanchet et al. [2005], we can query whether a protocol allows an attacker
to guess a weak secret and then verify the guess without contacting the server—if so, the
attacker can mount an offline guessing attack. (Online guessing attacks, such that the
attacker must interact with the server at every guess, are easily prevented, for instance by
limiting the number of retries.)
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In the case of our protocol, ProVerif shows the password is protected against offline
guessing attacks, by verifying the query:

weaksecret pwdA

Conversely, if we consider a variant of the protocol that passes the nonce in the clear, we
find an attack that can also be written as a concrete F program.

We write additional queries to test whether our code is functional, that is, whether some
events are ever reachable. For instance, the following query states that the Accept event is
never logged:

query Accept(x)⇒ ev:Unreachable()

By verifying that this query is false, ProVerif shows that this event is, in fact, reachable in
our server code. Such falsifiable queries are meant to test our intuitions about the code and
the boundaries of the attacker model, and to verify that our security goals are the strongest
properties satisfied by the protocool.

3. FORMALIZING A SUBSET OF F#

This section defines the untyped subset F of F# in which we write application code and
symbolic libraries. We specify the syntax of F, describe its informal and formal semantics,
and define security properties.

The language F consists of: a first-order functional core; algebraic datatypes with pattern-
matching (such as the type bytes in the symbolic implementation of Crypto); a few con-
currency primitives in the style of the pi calculus; and a simple type-free module system
with which we formalize the attacker model introduced in the previous section. (Although
we do not rely on type safety in the formal definition, F programs can be typechecked by
the F# compiler.)

3.1 Syntax and Informal Semantics of F

In the syntax below, ` ranges over first-order functions (such as freshBytes or hmacsha1 in
Crypto) and f ranges over datatype constructors (such as Name or Hmacsha1 in the type
bytes in Crypto). Functions and constructors are either primitive, or introduced by function
or datatype declarations. The constructor tuplen creates tuples of length n. We treat each
string constant s occurring in a source program as a nullary constructor Ss.

The primitives include the communication functions Pi.send, Pi.recv, and Pi.name de-
scribed in the previous section. The concurrency operator Pi.fork is a higher-order func-
tion; we build Pi.fork into the syntax of F. In F, we treat Pi.chan as a synonym for Pi.name;
they have different types but both create fresh atomic names. We omit the “Pi.” prefix for
brevity.

Syntax of F:

x,y,z variable
a,b name
f constructor (uncurried)
` function (curried)
true, false, tuplen,Ss primitive constructors
name,send, recv, log, failwith primitive functions
M,N ::= value
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x variable
a name
f (M1, . . . ,Mn) constructor application

e ::= expression
M value
` M1 . . . Mn function application
fork(fun()→e) fork a parallel thread
match M with(|Mi→ ei)i∈1..n pattern match
let x = e1 in e2 sequential evaluation

d ::= declaration
type s = (| fi of si1∗. . .∗simi)

i∈1..n datatype declaration
let x = e value declaration
let ` x1 . . .xn = e n > 0 function declaration

S ::= d1 · · ·dn system: list of declarations

We rely on the following syntactic conventions. For any phrase of syntax φ , we write
fv(φ) and fn(φ) for the sets of variables and names occurring free in φ . Moreover, we
write n(φ) for the set of all names, whether free or bound, occurring in φ . To facilitate the
translation from F to the pi calculus, we assume each function ` is a pi calculus name, so
that, for example, fn(` M1 . . . Mn) = {`}∪ fn(M1)∪ ·· ·∪ fn(Mn). A phrase of syntax φ is
closed if and only if fv(φ) = ∅. We identify phrases of syntax up to consistent renaming
of bound variables and names; that is, φ = φ ′ means that φ and φ ′ are the same up to
such renaming. We write φ{M/x} for the outcome of a capture-avoiding substitution of
value M for each free occurrence of x in φ . We write {M1/x1, . . . ,Mn/xn} as a shorthand
for the iterated substitution {M1/x1} . . .{Mn/xn}. We let σ range over ground substitutions
{M1/x1, . . . ,Mn/xn} of values for variables, where fv(Mi) = ∅.

A system S is a space-separated sequence of declarations. We write the list S as ∅ when
it is empty. A datatype declaration introduces a new type and its constructors (much like a
union type with tags in C). In F, only the constructors fi and their arities mi are considered;
the type expressions s and si j are included only for syntactic compatibility with F#. A
value declaration let x = e triggers the evaluation of expression e and binds the result to x.
A function declaration let ` x1 . . .xn = e defines function ` with formal parameters x1 . . .xn
and function body e. These functions may be recursive.

A value M is a variable, a name, or a constructor application. Names model channels,
keys, and nonces. Names can only be introduced during evaluation by calling the primitive
name. Source programs contain no free names. Expressions denote potentially concurrent
computations that return values. Primitive functions mostly represent communication and
concurrency: name() returns a freshly generated name; send M N sends N on channel M;
recv M returns the next value received on channel M; log M logs the event M; failwith M
represents a fatal unobservable exception; and fork(fun()→e) evaluates e in parallel. (We
need not model exception handling in F as we rely on exceptions only to represent fatal
errors that result in termination.) If ` has a declaration, the application ` M1 . . . Mn invokes
the body of the declaration with actual parameters M1, . . . , Mn. A match M with(|Mi→
ei)i∈1..n runs ei for the least i such that pattern Mi matches the value M; if the pattern Mi
contains variables, they are bound in ei by matching with M. If there are two or more
occurrences of a variable in a pattern, matching must bind each to the same value. (Strictly
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speaking, F# forbids patterns with multiple occurrences of the same variable. Still, the
effect of any such pattern in F can be had in F# by renaming all but one of the occurrences
and adding one or more equality constraints via a when clause.) Finally, let x = e1 in e2 first
evaluates e1 to a value M, then evaluates e2{M/x}, that is, the outcome of substituting M
for each free occurrence of x in e2.

In addition to the core syntax of F, we recover useful syntax supported by F# as follows.
The first three rules allow expressions to be written in places where only values are allowed
by the core syntax; these rules only apply when the left-hand side is not within the core
syntax.

Derived Expressions:

f (e1, . . . ,en)
4= let x1 = e1 in . . . let xn = en in f (x1, . . . ,xn) xi fresh

` e1 . . . en
4= let x1 = e1 in . . . let xn = en in ` x1 . . . xn xi fresh

match e0 with(|Mi→ ei)i∈1..n 4= let x0 = e0 in match x0 with(|Mi→ ei)i∈1..n x0 fresh

f 4= f () where constructor f has arity 0
(e1, . . . ,en)

4= tuplen(e1, . . . ,en) where n≥ 0
if e then e1 else e2

4= match e with | true→ e1 | false→ e2
e1 = e2

4= match (e1,e2) with | (x,x)→ true | (x,y)→ false
e1;e2

4= let x = e1 in e2 x fresh

We also allow the clauses in a match to contain when clauses; such clauses can be
rewritten using conditionals.

3.2 Operational Semantics of F

Next, we formalize the operational semantics of F, in the style introduced by Berry and
Boudol [1990] and Milner [1992], and formalize the idea of safety with respect to a query.
Let a configuration, C, be a multiset of running systems and logged events. We write
C |C′ for the composition of configurations C and C′. To formalize that configurations are
multisets, we identify configurations up to a structural equivalence relation, C ≡C′, that
includes laws of associativity and commutativity for composition. It also includes a law
C |∅≡C to allow deletion of an empty sequence of declarations, ∅.

Syntax of F Configurations, and Structural Equivalence:

C ::= S | event M | (C |C′)

C2 ≡C1⇒C1 ≡C2 C1 |C2 ≡C2 |C1
C1 ≡C2,C2 ≡C3⇒C1 ≡C3 C1 | (C2 |C3)≡ (C1 |C2) |C3
C1 ≡C2⇒C1 |C ≡C2 |C C |∅≡C C ≡C

The following rules define a small-step reduction semantics on configurations.

Reduction Rules: C→C′ where C and C′ are closed

C1→C2 if C1 ≡C′1, C′1→C′2, C′2 ≡C2
C0 | d S→C0 | S if d is a datatype declaration
C0 | d S→C0 | d | S if d is a function declaration, S 6= ∅
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C0 | let x = M S→C0 | S{M/x}
C0 | let x = ` M1 . . . Mn S→C0 | let x = e{M1/x1, . . . ,Mn/xn} S

if C0 ≡C1 | let ` x1 . . .xn = e
C0 | let x = name () S→C0 | S{a/x} if a /∈ fn(C0,S)
C0 | let x1 = send M N S1 | let x2 = recv M S2 →C0 | S1{()/x1} | S2{N/x2}
C0 | let x = log M S→C0 | event M | S{()/x}
C0 | let x = fork(fun()→e) S→C0 | let x = e | S{()/x}
C0 | let x = match M with (|Mi→ ei)i∈1..n S→C0 | let x = e1σ S if M = M1σ

C0 | let x = match M with (|Mi→ ei)i∈1..n S
→C0 | let x = match M with (|Mi→ ei)i∈2..n S if ¬∃σ . M = M1σ

C0 | let x = (let y = e1 in e2) S→C0 | let y = e1 let x = e2 S y /∈ fv(S)

The first rule allows configurations to be rearranged up to C ≡ C′ when calculating
a reduction. The second simply discards a top-level datatype declaration in a system;
types have no effect at runtime. The third forks a top-level function declaration d as a
separate system consisting just of d; this system is itself inert, but it can be called from
other systems running in parallel. (The formation rules for systems, presented later in this
section, ensure that functions have distinct names.) The remaining rules apply to a top-level
value declaration let x = e, for some e, running in a context including a configuration C0,
and specify how the expression e evaluates in that context. These rules formalize the
description of expression evaluation given earlier in this section.

The only primitive function not to appear in a reduction rule is failwith; applications of
the form failwith M are simply stuck (although in F# they raise an exception).

3.3 A Simple Example in F

We consider an example system S10 representing transmission of a single encrypted mes-
sage from an initiator to a responder. The system S10 consists of a sequence of ten decla-
rations, which we define as follows.

S10
4= dEv dCipher denc ddec dnet dkey dinit dresp du1 du2

The first two declarations are of types: a type of events (as in Section 2) and a type
of symmetric-key authenticated encryptions (a much simplified version of the type bytes
from Section 2).

dEv
4= type Ev = Send of string | Accept of string

dCipher
4= type Cipher = Enc of string ∗ name

Next, we declare an encryption function enc and a decryption function dec. (The latter
includes a pattern (Enc(p,z),z) containing two occurrences of the same variable. As men-
tioned above, such patterns are allowed in F but not literally in F#, although we can achieve
the same effect in F# by writing (Enc(p,z),z’) when z=z’.)

denc
4= let enc x y = Enc(x,y)

ddec
4= let dec x y = match (x,y) with | (Enc(p,z),z)→p

The next four declarations generate names for a shared network channel (net) intended
to be public, and a shared symmetric key (key) intended to be known only to the initiator
and responder, and define the initiator and responder role as functions init and resp. The
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initiator logs a Send event, creates an encryption, and sends it on the network channel. The
responder receives a message, decrypts it, and, if the decryption succeeds, logs an Accept
event.

dnet
4= let net = name()

dkey
4= let key = name()

dinit
4= let init x = log (Send(x)); let c = enc x key in send net c

dresp
4= let resp () = let m = recv net in let x = dec m key in log (Accept(x))

The final two declarations simply fork a single instance of the initiator role and a single
instance of the responder role.

du1
4= let u1 = fork(fun()→ init "msg1")

du2
4= let u2 = fork(fun()→ resp ())

To illustrate the rules of the formal semantics, we calculate a reduction sequence in
which an encryption of "msg1" flows from the initiator to the responder. We eliminate
empty systems with the equation C | ∅ ≡C. We begin the calculation with the following
steps: the two type declarations are discarded, and the first two function declarations are
forked as separate systems.

S10 → dCipher denc ddec dnet dkey dinit dresp du1 du2

→ denc ddec dnet dkey dinit dresp du1 du2

→ denc | ddec dnet dkey dinit dresp du1 du2

→ denc | ddec | dnet dkey dinit dresp du1 du2

The next part of the computation generates fresh, distinct names n and k and binds them
to the variables net and key, respectively. The following abbreviations record the outcome
of substituting these names for the variables in init and resp.

dn
init

4= dinit{n/net} dn k
init

4= dn
init{k/key}

dn
resp

4= dresp{n/net} dn k
resp

4= dn
resp{k/key}

We have the following reductions in which n and k are generated, and the initiator and
responder functions are forked as separate systems.

denc | ddec | dnet dkey dinit dresp du1 du2

→ denc | ddec | dkey dn
init dn

resp du1 du2

→ denc | ddec | dn k
init dn k

resp du1 du2

→ denc | ddec | dn k
init | d

n k
resp du1 du2

→ denc | ddec | dn k
init | d

n k
resp | du1 du2

In the next segment of the computation, we fork instances of the initiator and responder
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as separate threads. As a shorthand, let C0 = denc | ddec | dn k
init | d

n k
resp.

denc | ddec | dn k
init | d

n k
resp | du1 du2

= C0 | let u1 = fork(fun()→ init "msg1") let u2 = fork(fun()→ resp ())
→ C0 | let u1 = init "msg1" | let u2 = fork(fun()→ resp ())
→ C0 | let u1 = init "msg1" | let u2 = resp ()

The initiator logs a Send event and prepares to send the encrypted message on the chan-
nel n. Let C1 = C0 | let u2 = resp ().

C0 | let u1 = init "msg1" | let u2 = resp ()
→ C1 | let u1 = (log (Send("msg1")); let c=enc "msg1"k in send n c)
→ C1 | let u3 = log (Send("msg1")) let u1=(let c=enc "msg1"k in send n c)
→ C1 | event Send("msg1") | let u1=(let c=enc "msg1"k in send n c)
→ C1 | event Send("msg1") | let c=enc "msg1"k let u1=send n c
→ C1 | event Send("msg1") | let c=Enc("msg1",k) let u1=send n c
→ C1 | event Send("msg1") | let u1=send n (Enc("msg1",k))

Next, we consider reductions of the responder let u2 = resp (). In fact, it could have re-
duced in parallel with some of the reductions shown above; we are not here attempting to
show all possible interleavings. As a further abbreviation, let C2 =C0 | event Send("msg1") |
let u1=send n (Enc("msg1",k)).

C1 | event Send("msg1") | let u1=send n (Enc("msg1",k))
= C2 | let u2 = resp ()
→ C2 | let u2 = (let m = recv n in let x = dec m k in log (Accept(x)))
→ C2 | let m = recv n let u2 = (let x = dec m k in log (Accept(x)))

At this point, the encrypted message can pass between the sender and the receiver. We
end the calculation with the following steps. Let C3 = C0 | event Send("msg1").

C2 | let m = recv n let u2 = (let x = dec m k in log (Accept(x)))
= C3 | let u2 = (let x = dec (Enc("msg1",k)) k in log (Accept(x)))
→ C3 | let x = dec (Enc("msg1",k)) k let u2 = log (Accept(x)))
→ C3 | let x = match (Enc("msg1",k),k) with | (Enc(p,z),z)→p

let u2 = log (Accept(x)))
→ C3 | let x = "msg1"let u2 = log (Accept(x)))
→ C3 | let u2 = log (Accept("msg1")))
→ C3 | event Accept("msg1")

In summary, we have calculated the following sequence of reductions.

S10→+ denc |dec| d
n k
init | d

n k
resp | event Send("msg1") | event Accept("msg1")

3.4 Modelling Adversaries and Robust Safety in F

Formation Judgments for Expressions and Systems. We use system interfaces to control
the capabilities of the opponent. An interface, I, records the set of values, constructors,
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and functions imported or exported by a system. Since our verification method does not
depend on types, F interfaces omit type structure and track only the distinction between
values, constructors, and functions, plus the arity of constructors and (curried) functions.
The arity of a constructor is the width of its tuple of arguments, and may be zero. The arity
of a function is the number of its curried arguments, and may not be zero.

Interfaces:

µ ::= x:val | f :ctor n | `:fun n mention: value, constructor, or function
I ::= µ1, . . . ,µn interface (unordered sequence)

For example, let Prim be the following interface, which describes the F primitives, where
m is an arbitrary maximum width of tuples, and Strings is an arbitrary set of string con-
stants.

true: ctor 0, false: ctor 0, (tuplei: ctor i)i∈1..m, (Ss: ctor 0)s∈Strings

failwith: fun 1, log: fun 1, Pi.name: fun 1, Pi.chan: fun 1,
Pi.send: fun 2, Pi.recv: fun 1, Pi.fork: fun 1

As another example, let Ipub be the following interface, which enumerates the functions
exported by the symbolic libraries together with the application code for the example pro-
tocol in Section 2.

Net.send: fun 2, Net.accept: fun 1,
Crypto.S: fun 1, Crypto.iS: fun 1,
Crypto.base64: fun 1, Crypto.ibase64: fun 1,
Crypto.utf8: fun 1, Crypto.iutf8: fun 1,
Crypto.concat: fun 2, Crypto.iconcat: fun 1,
Crypto.mkNonce: fun 1, Crypto.mkPassword: fun 1,
Crypto.rsa keygen: fun 1, Crypto.rsa pub: fun 1,
Crypto.rsa encrypt: fun 2, Crypto.rsa decrypt: fun 2,
Crypto.hmacsha1: fun 2,
pkB: val, client: fun 1, server: fun 1

The functions Crypto.iS, Crypto.ibase64, Crypto.iutf8, and Crypto.iconcat do not appear
in our code, but are inverses of the message formatting functions Crypto.S, Crypto.base64,
Crypto.utf8, and Crypto.concat, which do appear. By including these inverses in the inter-
face, we ensure that the attacker can deconstruct messages sent on the wire.

To define when a system exports an interface, we introduce inductively-defined for-
mation judgments for expressions and systems. Let dom(I) be the set of variables, con-
structors, and functions mentioned in I. We write I ` � to mean that the interface I
mentions no value, constructor, or function twice, that is, there is no split I = I′, I′′ with
dom(I′)∩ dom(I′′) 6= ∅. We write I ` µ to mean that I ` � and moreover µ is a member
of I, that is, I = I′,µ for some I′.

The formation judgment I ` S : I′ means S refers only to external values, construc-
tors, and functions listed in I, and provides declarations for the values, constructors, and
functions listed in I′. The formation judgment I ` e means that all occurrences of vari-
ables in e are bound and all occurrences of constructors and functions in e have the cor-
rect arity. We define these judgments inductively via the rules in the following table.
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In the rule for match, we write fv(Mi):val as a shorthand for x1:val, . . . ,xn:val where
{x1, . . . ,xn}= fv(Mi).

Formation Rules for F:

I ` x:val
I ` x

I ` f :ctor n I `Mi ∀i ∈ 1..n

I ` f (M1, . . . ,Mn)

I ` `:fun n I `Mi ∀i ∈ 1..n

I ` ` M1 . . . Mn

I ` e

I ` fork(fun()→e)

I ` e1 I,x:val ` e2

I ` let x = e1 in e2

I `M I, fv(Mi):val `Mi fn(Mi) = ∅
I, fv(Mi):val ` ei ∀i ∈ 1..n

I `match M with (|Mi→ ei)i∈1..n

I ` �
I `∅ : ∅

Is = ( fi:ctor ni)i∈1..n I, Is ` S : I′

I ` type s = (| fi of si1 ∗ · · · ∗ sini)
i∈1..n S : Is, I′

I ` e I,x:val ` S : I′

I ` let x = e S : x:val, I′
I, `:fun n,x1:val, . . . ,xn:val ` e I, `:fun n ` S : I′

I ` let ` x1 . . .xn = e S : `:fun n, I′

These formation rules are an abstraction of the typing rules of F# for the fragment we
consider. They are enforced by the F# compiler during typechecking.

Recall the system S10 = dEv dCipher denc ddec dnet dkey dinit dresp du1 du2 and the interface
Prim given earlier. We can derive that Prim ` S10 : I10, where I10 is the interface:

Send: ctor 1, Accept: ctor 1, Enc: ctor 2, enc: fun 2, dec: fun 2,
net: val, key: val, init: fun 1, resp: fun 1, u1: val, u2: val

If I ` S : I′ then I′ is a function of S:

LEMMA 1. If I1 ` S : I′1 and I2 ` S : I′2 then I′1 = I′2.

The formation rules are compositional in the following sense.

LEMMA 2. If I0 ` S1 : I1 and I2 ` S2 : I2 with I0, I1 = I2, I′2 then I0 ` S1 S2 : I1, I2.

Event-Based Security Properties of F. We express authentication and other properties
in terms of event-based queries, using a syntax borrowed from ProVerif. The general form
of a query is ev:E ⇒ ev:B1 ∨ ·· · ∨ ev:Bn, which means that every reachable configuration
containing an event matching the pattern E also contains an event matching one of the Bi
patterns.

Queries and Safety:

A query q is written ev:E⇒ ev:B1∨·· ·∨ ev:Bn
for values E, B1, . . . , Bn containing no free names, with fv(Bi)⊆ fv(E) for each i ∈ 1..n.

Let σ stand for a substitution {M1/x1, . . . ,Mn/xn}.
Let C |= ev:E⇒ ev:B1∨·· ·∨ ev:Bn if and only if

whenever C ≡ event Eσ |C′, we have C′ ≡ event Biσ |C′′ for some i ∈ 1..n.
Let C→∗≡ C′ if and only if either C ≡C′ or C→∗ C′.
Let S be safe for q if and only if C |= q whenever S→∗≡ C.
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For example, a system is safe for query ev:Accept(x)⇒ ev:Send(x) from Section 2 if
every reachable configuration containing event Accept(M) also contains event Send(M).
Our example system S10 satisfies this property. For example, let C10 be any one of the con-
figurations shown earlier such that S10→∗C10. We can easily see that C10 |= ev:Accept(x)⇒
ev:Send(x), since an Accept event only occurs in the final configuration, which includes a
matching Send event.

We define a robust safety property, that is, safety in the presence of an opponent. To
avoid vacuous failures, we forbid the opponent from logging events. If I is an interface, an
I-opponent is a system O that depends only on I and Prim, but not log.

Formal Threat Model: Opponents and Robust Safety

Let S :: Ipub if and only if Prim ` S : Ipub, Ipriv for some Ipriv.
Let O be an I-opponent if and only if Prim\log, I ` O : I′ for some I′.
Let S be robustly safe for q and I if and only if

S :: I and S O is safe for q for all I-opponents O.

Hence, setting a verification problem for a system S essentially amounts to selecting the
subset Ipub of its interface that is made available to the opponent.

Consider again our small example S10, its interface I10, and the query q = ev:Accept(x)⇒
ev:Send(x) given earlier. We already noted that S10 is safe for q and that Prim ` S10 : I10,
but S10 is not robustly safe for q and I10. The interface I10 exposes too much to the op-
ponent, and hence does not reflect our intended threat model. For example, the secret key
is included in I10, allowing the following opponent O1 to intercept the encrypted message,
and replace it with another.

O1
4= let u1 = recv net let u2 = send net (enc("bogus",key))

Moreover, the constructor Enc exposed in I10 allows the following opponent O2 to use
pattern matching to discover the secret key, and hence to send a bogus message.

O2
4= let u = match recv net with Enc(m,k)→send net (enc("bogus",k))

The concrete counterpart to this symbolic attack is the ability to extract the encryption
key from any ciphertext, a major failure of a cryptosystem. Since this possibility is not nor-
mally included in the threat model for protocols, we would not normally export encryption
constructors, such as Enc, to the symbolic opponent.

For either O1 or O2 we can calculate the following computation, which ends in a config-
uration that does not satisfy the query q.

S10 Oi→+ denc | ddec | dn k
init | d

n k
resp | event Send("msg1") | event Accept("bogus")

On the other hand, S10 is robustly safe for q and the following interface that reflects
our intended threat model. The interface does not expose the secret key to the attacker,
and by not exporting the constructor Enc prevents the attacker from extracting keys from
ciphertexts. It does allow the attacker to initiate protocol roles, to send and receive network
traffic, and to encrypt and decrypt messages.

enc: fun 2, dec: fun 2, net: val, init: fun 1, resp: fun 1

For the example protocol in Section 2, let S be the system that consists of application
code and symbolic libraries. We have that S :: Ipub, where Ipub is the example interface
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given earlier in this section. Our verification problem is to show that S is robustly safe for
ev:Accept(x)⇒ ev:Send(x) and Ipub.

4. MAPPING F# TO A VERIFIABLE MODEL

We target the script language of ProVerif for verification purposes. ProVerif can estab-
lish correspondence and secrecy properties for protocols expressed in a variant of the pi
calculus, whose syntax and semantics are detailed in Section 4.2. In this calculus, active
attackers are represented as arbitrary processes that run in parallel, communicate with the
protocol on free channels, and perform symbolic computations. Given a script that defines
the protocol, the capabilities of the attacker, and some target query, ProVerif generates log-
ical clauses then uses a resolution-based semi-algorithm. When ProVerif completes suc-
cessfully, the script is robustly safe for the target query, that is, the query holds against all
(pi calculus) attackers; otherwise, ProVerif attempts to reconstruct an attack trace. ProVerif
may also diverge, or fail, as can be expected since query verification in the pi calculus is
not decidable. (ProVerif is known to terminate for the special class of tagged protocols
[Blanchet and Podelski 2005]. However, the protocols in our main application area of web
services rarely fall in this class.) ProVerif is a good match for our purposes, as it offers both
general soundness theorems and an effective implementation. Pragmatically, we also rely
on previous positive experience in generating large verification scripts for ProVerif [Bhar-
gavan, Fournet, Gordon, and Pucella 2004, Bhargavan, Corin, Fournet, and Gordon 2007,
Bhargavan, Fournet, and Gordon 2004]. In principle, however, we may benefit from any
other verification tool.

4.1 Translation Outline

To obtain a ProVerif script, we translate F programs to pi calculus processes and rewrite
rules. To help ProVerif succeed, we use a flexible combination of several translations. To
validate our usage of ProVerif, we also formally relate arbitrary attackers in the pi calculus
to those expressible in F.

At its core, our translation maps functions to processes using the classic call-by-value
encoding from lambda calculus to pi calculus [Milner 1992]. For instance, we may trans-
late the mac function declaration of Section 2

let mac nonce pwd text =
Crypto.hmacsha1 nonce (concat (utf8 pwd) (utf8 text))

into the process

!in(mac, (nonce,pwd,text,k));
out(k,Hmacsha1(nonce,Concat(Utf8(pwd),Utf8(text))))

This process is a replicated input on channel mac; each message on mac carries the
functional arguments (nonce,pwd,text) as well as a continuation channel k. When the
function completes, it sends back a message that carries its result on channel k. Similarly,
we translate the server function declaration of Section 2 into:

!in(server, (arg,kR));
new kX; out(accept, (address,kX)); in(kX,xml);
new kM; out(unmarshall, (xml,kM)); in(kM,(m,en,text));
new kV; out(verify, ((m,en,text),sk,pwd,kV)); in(kV,());
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event Ev(Accept(text));
out(kR, ())

This process first calls function accept as follows: it generates a fresh continuation chan-
nel kX; it sends a message that carries the argument address and kX on channel accept;
and it receives the function result xml on channel kX. The process then similarly calls the
functions unmarshall and verify. If both calls succeed, the process finally logs the event
Accept(text) and returns an (empty) result on kR.

Our pi calculus includes the same algebra of values—terms built from variables, names,
and constructors—as F, so values are unchanged by the translation. Moreover, our pi cal-
culus includes value destructors defined by rewrite rules on the algebra, and whenever
possible after inlining, our implementation maps simple functions to destructors. (Our for-
mal translation in Section 4.3 does not cover this optimization.) For instance, we actually
translate the mac function declaration into the native ProVerif reduction:

reduc mac(nonce,pwd,text) =
HmacSha1(nonce,Concat(Utf8(pwd),Utf8(text)))

Both formulations of mac are equivalent, but the latter is more efficient. On the other
hand, complex functions with side-effects, recursion, or non-determinism are translated
as processes. Our tool also supports a third potential translation for mac, into a ProVerif
predicate declaration; predicates are more efficient than processes and more expressive
than reductions. Our translation first performs aggressive inlining of F functions, constant
propagation, and similar optimizations. It then globally picks the best applicable formula-
tion for each reachable function, while eliminating dead code.

Finally, the translation gives to the pi calculus context the capabilities available to at-
tackers in F. For example, the channel httpchan representing network communication is
exported to the context in an initialization message. More interestingly, every public func-
tion coded as a process is made available on an exported channel.

For instance, the server function is available to the attacker; accordingly, we generate
the process:

!in(serverPUB, (arg,kR)); out(server, (arg,kR))

This enables the attacker to trigger instances of the server using the public channel serverPUB.
Conversely, the private channel server is used only by the translation, so that the attacker
cannot intercept local function calls.

4.2 A Pi Calculus

As a basis for describing our translation, we formalize a subset of ProVerif’s pi calculus
input language. This section describes its syntax and semantics, based in part on a pre-
sentation of the applied pi calculus [Abadi and Fournet 2001; Blanchet et al. 2005]. Our
implementation relies on all the features of this pi calculus, although some of them are not
used by the translation in Section 4.3.

The following table defines the syntax of scripts; each script consists of a set of decla-
rations followed by a process. Values are identical to those in F. Our calculus supports the
declaration and application of destructors, functions defined by equational rewrites given
in reduc declarations. The syntax of processes includes a conventional pi calculus core,
plus assertion of events, pattern matching, and destructor application.
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Processes, Declarations, and Scripts:

M,N values (as in F)
g destructor function
P,Q,R ::= process

in(M,x);P input of x from M (x has scope P)
out(M,N);P output of N on M
new a;P make new name a (a has scope P)
!P replication of P
P | Q parallel composition
0 inactivity
event M event M
let x1, . . . ,xn suchthat M = N in P else Q match (x1, . . . , xn have scope N and P)
let x = g(M1, . . . ,Mn) in P else Q destructor application (x has scope P)

∆ ::= declaration
free a name a
data f /n data constructor
private fun f /n private constructor
reduc g(M1, . . . ,Mn) = M destructor
private reduc g(M1, . . . ,Mn) = M private destructor

∆s ::= ∆1. · · ·∆n. set of declarations (n≥ 0)
Σ ::= ∆s process P script

A top level script Σ = ∆s process P defines a process P, which may use names, con-
structors, and destructors as introduced by the set ∆s of declarations. In addition, the
declarations indicate whether the implicit attacker, a process deemed to run alongside and
interact with P, has access to each constructor and destructor. We assume that ∆s contains
no two declarations for the same name, constructor, or destructor. We write ∅ for the
empty set of declarations.

A declaration free a introduces a name a, that may occur free in P, and also may occur
free in the attacker. We assume the process P has no free variables, and that each free name
a occurring in P is introduced by a declaration free a in ∆s.

A declaration data f /n introduces a constructor f that has arity n and may occur in the
attacker process. Dually, a declaration private fun f /n introduces a constructor f that has
arity n and may not occur in the attacker process. A declaration reduc g(M1, . . . ,Mn) = M
introduces a destructor g that has arity n and defining equation g(M1, . . . ,Mn) = M, and that
may occur in the attacker process. Dually, a declaration private reduc g(M1, . . . ,Mn) =
M introduces a destructor g that has arity n and defining equation g(M1, . . . ,Mn) = M,
and that may not occur in the attacker process. For each defining equation, we assume
fv(M) ⊆ fv(M1, . . . ,Mn) and fn(M1, . . . , Mn,M) = ∅. As in pattern-matching in F, we do
not prohibit multiple occurrences of the same variable in the values M1, . . . , Mn. In any
occurrence of a constructor or destructor in Σ, we assume that the number of its arguments
equals its arity as declared in Σ.

The intended meaning of our process syntax is as follows. An input in(M,x);P and
an output out(M,N);Q attempt to receive and send, respectively, a message on the chan-
nel identified by the value M; if M is a channel name, and in(M,x);P and out(M,N);Q
are running in parallel, they may evolve into P{M/x} running in parallel with Q. A re-
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striction new a;P creates a fresh name a, and acts as P. A replication !P behaves as an
unbounded array of replicas of P. A composition P | Q behaves as P and Q running in
parallel. Inactivity 0 does nothing. An event event M represents an event, labelled with
the value M. A match let x1, . . . ,xn suchthat M = N in P else Q attempts to match the
pattern N against the value M: if M = Nσ for some substitution σ , it behaves as Pσ ; other-
wise it behaves as Q. A destructor application let x = g(M′1, . . . ,M

′
n) in P else Q attempts to

rewrite g(M′1, . . . ,M
′
n) using the defining equation g(M1, . . . ,Mn) = M of the destructor g:

if Miσ = M′i for each i, for some substitution σ , it behaves as Pσ ; otherwise as Q.
We depend on the following abbreviations, including a pattern-matching version of input

and a standalone (asynchronous) version of output.

Derived Processes:

in(M,N);P 4= in(M,x); let fv(N) suchthat x = N in P x fresh
out(M,N) 4= out(M,N);0
τ;P 4= new a; let x = a in P else 0 a and x fresh
record M;P 4= τ;(event M | P)
new a1, . . . ,an;P 4= new a1; . . . ;new an;P

The semantics of processes is given as a reduction relation P→ Q, itself defined from
an auxiliary structural equivalence relation P ≡ Q. The rules of reduction make precise
the informal semantics of the calculus. The purpose of structural equivalence is to allow
a process to be rewritten so that the rules of reduction may apply. The reduction relation
implicitly depends on a fixed set of ambient declarations, ∆sa, known from the context.

Structural Equivalence of Processes:

P≡ P
Q≡ P⇒ P≡ Q
P≡ Q,Q≡ R⇒ P≡ R
P | 0≡ P
P | Q≡ Q | P
(P | Q) | R≡ P | (Q | R)

!P≡ P | !P
a /∈ fn(P)⇒ new a;(P | Q)≡ P | new a;Q
new a;new b;P≡ new b;new a;P
new a;0≡ 0
P≡ P′⇒ new a;P≡ new a;P′

P≡ P′⇒ P | R≡ P′ | R

Reduction Semantics for Processes: (relative to ambient declarations ∆sa)

P≡ Q,Q→ Q′,Q′ ≡ P′⇒ P→ P′

P→ P′⇒ P | Q→ P′ | Q
P→ P′⇒ new a;P→ new a;P′

in(M,x);P | out(M,N);Q→ P{N/x} | Q

let x1, . . . ,xn suchthat M = N in P else Q→
{

Pσ if M = Nσ and dom(σ) = {x1, . . . ,xn}
Q otherwise (when there is no such σ )

let x = g(M′1, . . . ,M
′
n) in P else Q→

{
P{Mσ/x} if M′i = Miσ for all i ∈ 1..n
Q otherwise (when there is no such σ )

where (g(M1, . . . ,Mn) = M) declared in ∆sa

Let P→∗≡ P′ if and only if P≡ P′ or P→∗ P′.
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We already introduced queries, ranged over by q, in the setting of F in Section 3. We
make pi calculus definitions of queries and safety that correspond closely to those for F.

Query Satisfaction and Safety:

P |= ev:E ⇒ ev:B1 ∨ ·· · ∨ ev:Bn if and only if whenever P ≡ new as;(event Eσ | P′), we
have P′ ≡ event Biσ | P′′ for some i ∈ 1..n and some P′′.

A process P is safe for q if and only if, for all reductions P→∗≡ P′, we have P′ |= q.

Finally, we formalize the idea of an opponent process, and introduce a robust form of
safety relative to a query. If we express a security property as robust safety of a suitably
constructed script ∆s process P, we can check the property by running ProVerif.

Opponent Processes and Robust Safety:

A ∆s-opponent is a process O with no events, such that ∆s process O is well formed and
O contains no constructor or destructor declared private in ∆s.

A script ∆s process P is robustly safe for q if and only if
for all ∆s-opponents O, P | O is safe for q.

Robust safety for F quantifies over I-opponents that may include their own datatype
declarations. In contrast, ProVerif assumes an arbitrary but fixed set of declarations. In
preparation for our proof of Theorem 1, we remark that, without loss of generality, it is
safe to consider only I-opponents that systematically use instead some fixed datatype,
for instance by declaring a fresh constructor Box:ctor 2, introducing a fresh name a f
for each type constructor that does not occur in I, and recursively applying the encod-
ing f (M1, . . . ,Mn) = Box(a f ,(M1, . . . ,Mn)) to every value of the I-opponent. For such
opponents to be well formed, the parameter m specifying the maximum width of tuples m
must be chosen to be greater than the arity of these constructors f . We believe that the
encoding does not affect any safety properties for queries that do not use the eliminated
constructors.

4.3 A Formally-Correct Translation From F to Pi

We now explain our formal translation from F to ProVerif. (The actual translation that we
implemented is similar in spirit but also features various optimizations.) We present the
translation of expressions E [[e]](x,P), the translation of systems S [[S]](P), and lastly the
translation of systems with exported interfaces [[S :: Ipub]]. (Recall that S :: Ipub if and only
if Prim ` S : Ipub, Ipriv for some Ipriv.)

Functions defining script [[S :: Ipub]], assuming that S :: Ipub

Ambient declarations ∆s[[S :: Ipub]] Ambient declarations for the script
Process E [[e]](x,P) Bind x to value of e then run P
Process S [[d]](P) Elaborate declaration d then run P
Process S [[S]](P) Elaborate system S then run P
Process P[[S :: Ipub]] Elaborate system S then export Ipub

[[S :: Ipub]]
4= ∆s[[S :: Ipub]] process P[[S :: Ipub]]
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Next, we present the ambient declarations ∆s[[S :: Ipub]] obtained from S with attacker
interface Ipub. In making the definition, we assume that S :: Ipub, so that, by Lemma 1,
there is a unique I such that Prim ` S : I. The constructors in the public interface Ipub are
public, while the rest of the constructors in I are private. A constructor Box is available to
model constructors used by the opponent, as discussed in the final paragraph of Section 4.2.
We assume Box does not occur in S.

Ambient declarations ∆s[[S :: Ipub]], assuming that S :: Ipub:

∆s[[S :: Ipub]]
4= free publish.

data f /n. for each f :ctor n ∈ Ipub,Prim,Box:ctor 2
private fun f /n. for each f :ctor n ∈ I \ Ipub where Prim ` S : I

The translation of expressions E [[e]](x,P) = Q takes an F expression e and a ProVerif
process P with a free variable x, and returns another ProVerif process Q. The intention is
that Q simulates the evaluation of e to a value M, and then runs the process P{M/x}. The
variable x can be considered bound, with scope P; that is, if x′ /∈ fv(P) then E [[e]](x,P) =
E [[e]](x′,P{x′/x}). Although we define the translation formally only on the core expres-
sions of F, our tools directly implement the translation on a richer syntax of F# expressions
that includes the derived expressions in Section 3.

In this translation, we assume each F function ` /∈ dom(Prim) is a pi calculus name.

Process E [[e]](x,P):

E [[M]](x,P) 4= P{M/x}
E [[` M1 . . . Mn]](x,P) 4= new k;(out(`,(M1, . . . ,Mn,k)) | in(k,x);P)

for ` /∈ dom(Prim), k fresh
E [[name ()]](x,P) 4= new a;P{a/x} for a /∈ fn(P)
E [[send M N]](x,P) 4= out(M,N);P{()/x}
E [[recv M]](x,P) 4= in(M,x);P
E [[log M]](x,P) 4= record M;P{()/x}
E [[failwith M]](x,P) 4= new k; in(k,x);P
E [[fork(fun()→e)]](x,P) 4= E [[e]](x,0) | P{()/x}
E [[match M with(|Mi→ ei)i∈1..n]](x,P) 4=

let fv(M1) suchthat M = M1 in E [[e1]](x,P) else
· · ·
let fv(Mn) suchthat M = Mn in E [[en]](x,P) else 0
where we assume (fv(M)∪ fv(P))∩ fv(Mi) = ∅ for each i

E [[let x = e1 in e2]](y,P) 4= E [[e1]](x,E [[e2]](y,P)) for x /∈ fv(P)

If the expression is a value, then it is simply substituted for x in the process P. If the
expression is an application of a function ` /∈ dom(Prim), then the arguments M1, . . . ,Mn
and the continuation channel k are sent onto the function channel `—this function chan-
nel ` is defined below in the translation of program scripts. The primitives name, send,
recv, log, fork correspond to the pi calculus primitives restriction, output, input, event,
and parallel composition, respectively. We compile the primitive failwith to an inactive pi
calculus process. (It is convenient for the sake of the proofs in Appendix B to include the
unreachable continuation P in the translation, so that all translated expressions are linear
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contexts, Lemma 9.) We compile the match of F to the let . . .suchthat . . . construct of the
pi calculus. We can always satisfy the condition (fv(M)∪ fv(P))∩ fv(Mi) = ∅ by renaming
the bound variables fv(Mi). Lastly, the sequential evaluation let x = e1 in e2 translates to
nested compilations of e1 and e2.

Next, we define processes S [[d]](P) and S [[S]](P) representing sequential evaluation of
d and S then P:

Processes S [[d]](P) and S [[S]](P):

S [[type s = (| fi of si1 ∗ · · · ∗ sini)
i∈1..n]](P) 4= P

S [[let x = e]](P) 4= E [[e]](x,P)
S [[let ` x1 . . .xn = e]](P) 4= (!in(`,(x1, . . . ,xn,k));E [[e]](x,out(k,x))) | P k fresh

S [[∅]](P) 4= P
S [[d S]](P) 4= S [[d]](S [[S]](P))

A type declaration is discarded, while a value declaration uses the translation of expres-
sions. For a function declaration for `, the translation listens on the channel `, and outputs
the result of the computation to the continuation parameter k.

The translation of a system S [[S]](P) is an extension of the translation of declaration
S [[d]](P) by folding the system as an ordered list of declarations.

Finally, we present the top-level process P[[S :: Ipub]] representing execution of S with
public interface Ipub. We use restrictions to hide the names of user-defined functions. We
publish all public values and forwarded functions onto a fresh publish channel, making
them accessible to the attacker. Let a→ b be a forwarder process, defined as !in(a,z).out(b,z),
that receives messages on channel a and sends them on channel b. We use forwarders to
publish aliases for function names, as opposed to the names themselves, to enable the pi
calculus attacker to call but not to re-define functions implemented as processes by receiv-
ing on their names.

Process P[[S :: Ipub]], assuming that S :: Ipub:

P[[S :: Ipub]]
4= new `;

for each ` ∈ dom(I) where Prim ` S : I
new `pub;`pub→ ` |

for each ` ∈ dom(Ipub) and `pub fresh
S [[S]](out(publish,xs))

where the tuple xs collects all x ∈ dom(Ipub)
and all `pub with ` ∈ dom(Ipub)

Our main correctness result is the following.

THEOREM 1 REFLECTION OF ROBUST SAFETY. If S :: Ipub and [[S :: Ipub]] is robustly
safe for q, then S is robustly safe for q and Ipub.

In the statement of the theorem, S is the series of modules that define our system; Ipub is
a selection of the values, constructors, and functions declared in S that are made available
to the attacker; q is our target security query; and [[S :: Ipub]] is the ProVerif script obtained
from S and Ipub.
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fsc.exe -o tiny.exe –define fs -r System.Security.dll pi.fsi pi.fs crypto.fsi crypto.fs net.fsi net.fs tiny.fs
./tiny.exe

Sending FADCIzZhW3XmgUABgRJj1KjnWyDvEoAAezcg5gaDY5lsP0CWOCoFR9a0...

fsc.exe -o tiny-a.exe –define fs ../lib/pi.fsi ../lib/pi.fs crypto.fsi crypto-a.fs net.fsi net-a.fs tiny.fs
./tiny-a.exe

Sending HMACSHA1{nonce3}[pwd1 | ’Hi’] | RSAEncrypt{PK(rsa secret2)}[nonce3] | ’Hi’

fs2pv.exe -o tiny.pv crypto.fsi crypto-a.fs net.fsi net-a.fs tiny.fsi tiny.fs
analyzer.exe -in pi tiny.pv | grep RESULT

RESULT ev:Accept(x)⇒ev:Send(x) is true.
RESULT attacker:skB[]⇒ev:Unreachable() is true.
RESULT equivalence proof succeeded (bad not derivable).
RESULT ev:Send(x)⇒ev:Unreachable() is false.
RESULT ev:Accept(x)⇒ev:Unreachable() is false.

Table II. Building and executing three versions of Tiny.

The proof of Theorem 1 appears in Appendix B; it relies on an operational correspon-
dence between reductions on F configurations and reductions in the pi calculus.

We implement our translation as a command line tool fs2pv that intercepts code after
the F# compiler front-end. The tool takes as input a series of module implementations
defining S and module interfaces bounding the attacker’s capabilities, much like Ipub. The
tool relies on the typing discipline of F# (which is stronger than the scope discipline of F)
to enforce that S :: Ipub. It then generates the script [[S :: Ipub]] and runs ProVerif. If ProVerif
completes successfully, it follows that [[S :: Ipub]] is robustly safe for q. Hence, by Theo-
rem 1, we conclude that S is robustly safe for q and Ipub.

As a simple example, recall the system S and its interface Ipub, as stated at the end of
Section 3. Our tool runs successfully on this input, proving that S is robustly safe for the
query ev:Accept(x)⇒ ev:Send(x) and Ipub.

Our tools rely on classic program transformations in F, applied on systems before trans-
lation to the pi calculus. For instance, we use code inlining for function applications (re-
placing the expression ` M1 . . . Mn with e{M1/x1, . . . ,Mn/xn} within the scope of a decla-
ration let ` x1 . . .xn = e) and dead code elimination for function declarations (eliminating a
function declaration if the function is never applied). We easily check that these transfor-
mations preserve all well-formed conditions and do not affect any robust safety properties.
We omit their standard formal treatment.

4.4 Translation for the Example of Section 2

We provide the complete source code and translated pi calculus code for the example of
Section 2. To improve the readability of pi calculus code, we use customized versions of
our libraries, obtained by erasing code that is unnecessary in this example, and replacing
all calls to the Prins library with generation of fresh passwords and keys. (Our tests also
include variants of this example linked with unmodified libraries.)

Table II gives the command lines used to build and execute three versions of the example:
tiny.exe is compiled using the F# compiler (fsc.exe) with the concrete libraries; tiny-a.exe
is similarly compiled with the symbolic libraries; tiny.pv is compiled using our model
extractor (fs2pv.exe) and verified using the ProVerif tool (analyzer.exe). The flag ‘–define
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module Crypto
type str
type bytes
type rsa key
val S: string→str
val iS: str→string
val base64: bytes→str
val ibase64: str→bytes
val utf8: str→bytes
val iutf8: bytes→str
val concat: bytes→bytes→bytes
val concat3: bytes→bytes→bytes→bytes
val iconcat: bytes→bytes ∗ bytes
val iconcat3: bytes→bytes ∗ bytes ∗ bytes
val mkNonce: unit→bytes
val mkPassword: unit→str
val hmacsha1: bytes→bytes→bytes
val rsa keygen: unit→ rsa key
val rsa pub: rsa key→ rsa key
val rsa encrypt: rsa key→bytes→bytes
val rsa decrypt: rsa key→bytes→bytes
val aes encrypt: bytes→bytes→bytes
val aes decrypt: bytes→bytes→bytes
val mkKey: unit→bytes

module Pi
val fork: (unit→unit)→unit
type name
type ’a chan
val name: string→name
val chan: unit→ ’a chan
val send: ’a chan→ ’a→unit
val recv: ’a chan→ ’a
type ’a trace
val trace: unit→ ’a trace
val log: ’a trace→ ’a→unit

module Net
val accept: Crypto.str→Crypto.str
val send: Crypto.str→Crypto.str→unit

module Tiny
val pkB: Crypto.rsa key
val client: Crypto.str→unit
val server: unit→unit

Table III. Interfaces for Crypto, Pi, Net, and Tiny (files crypto.fsi, pi.fsi, net.fsi, and tiny.fsi).

fs’ includes pretty-printing code, otherwise omitted for model extraction.
Table III lists all interfaces used by these command lines. Table IV lists the F# imple-

mentation of Tiny, which includes the code fragments explained in Section 2. (As a minor
difference, the primitive log takes here an additional parameter tr, discarded during model
extraction.) Table V lists the resulting ProVerif script produced by fs2pv.exe.

4.5 Verification Results for Simple Protocols

To validate our approach experimentally, we implemented a series of cryptographic proto-
cols and verified their security against demanding threat models.

Tables VI and VII summarize our results for these protocols. For each protocol, Table VI
gives the program size for the implementation (in lines of F# code, excluding interfaces and
code for shared libraries), the number of messages exchanged, and the size of each mes-
sage, measured both in bytes for concrete runs and in number of constructors for symbolic
runs. Table VII concerns verification; it gives the number of queries and the kinds of secu-
rity properties they express. A secrecy query requires that a password (pwd) or key (key)
be protected; a weak-secrecy query further requires that a weak secret (weak pwd) be pro-
tected from a guessing attack. An authentication query requires that a message content
(msg), its sender (sender), or the whole exchange (session) be authentic. Some queries
can be verified even in the presence of attackers that control some corrupted principals,
thereby getting access to their keys and passwords. Not all queries hold for all protocols;
in fact some queries, such as the functionality queries in Section 2, are designed to test the
boundaries of the attacker model and are meant to fail during verification. Finally, the table
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open Pi
open Crypto

let marshall (m,en,text) = base64(concat3 m en (utf8 text))
let unmarshall v =

let m,en,text = iconcat3 (ibase64 v) in (m,en,iutf8 text)

let mac nonce password text =
hmacsha1 nonce (concat (utf8 password) (utf8 text))

let make text pk password =
let nonce = mkNonce() in
(mac nonce password text, rsa encrypt pk nonce, text)

let verify (m,en,text) sk password =
let nonce = rsa decrypt sk en in
if m = mac nonce password text then () else failwith "bad MAC"

let pwdA = mkPassword()
let skB = rsa keygen ()
let pkB = rsa pub skB

type events = Send of str | Accept of str | Unreachable // security events
let tr = trace ()

let address = S "http://localhost:8080/pwdmac"
let client text =

log tr (Send(text));
Net.send address (marshall (make text pkB pwdA))

let server () =
let m,en,text = unmarshall (Net.accept address) in
verify (m,en,text) skB pwdA; log tr (Accept(text))

Table IV. F# implementation of Tiny (file tiny.fs).

gives the size of the logical model generated by ProVerif (the number of logical clauses)
and its total running time to verify all queries for the protocol.

In the following, we describe the first three of these protocols. The next section describes
larger protocols based on web services security.

Password-based authentication. For example, consider the simple authentication proto-
col of Section 2, named Password-based MAC in the tables; its implementation has 38 lines
of specific code; ProVerif takes less than one second to verify the message authentication
query and to verify that the protocol protects the password from guessing attacks.

A variant of our implementation for this protocol (second row of Tables VI and VII)
produces the same message, but is more modular and relies on more realistic libraries; it
supports distributed runs and enables the verification of queries against active attackers
that may selectively corrupt some principals and get access to their keys and passwords.
(Bhargavan et al. [2007c] details this extended attacker model.)

Otway-Rees. As a benchmark, we wrote a program for the four message Otway-Rees
key establishment protocol [Otway and Rees 1987], with two additional messages after
key establishment to probe the secrecy of message payloads encrypted with this key. To
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free publish.
data True/0.
data False/0.
data Box/2.
reduc equal(x,x) = True().
(∗ deleted unused F# primitives ∗)

data SS/0. (∗ string constants ∗)
data Shttplocalhost8080pwdmacS/0.
data SnonceS/0.
data SrsausecretS/0.

private fun Literal/1.
private fun Base64/1.
private fun C/2.
private fun Utf8/1.
private fun Name/1.
private fun HmacSha1/2.
private fun RsaKey/1.
private fun RsaEncrypt/2.
private fun SK/1.
private fun PK/1.

reduc S(s) = Literal(s).
reduc iS(Literal(s)) = s.
reduc base64(b) = Base64(b).
reduc ibase64(Base64(s)) = s.
reduc concat(x,y) = C(x,y).
reduc iconcat(C(x,y)) = (x,y).
reduc concat3(r1,r3,r4) = C(r1,C(r3,r4)).
reduc iconcat3(C(r5,C(r7,r8))) = (r5,r7,r8).
reduc utf8(x) = Utf8(x).
reduc iutf8(Utf8(s)) = s.

free mkNoncePUB.
reduc hmacsha1(key,text) = HmacSha1(key,text).
reduc rsaupub(SK(s)) = PK(s).
free rsaukeygenPUB.
reduc rsauencrypt(key,text) =

RsaEncrypt(key,text).
reduc rsaudecrypt

(SK(keyP),RsaEncrypt(PK(keyP),text)) = text.
private reduc marshall((r10,r11,r13)) = Base64(C(r10,C(r11,Utf8(r13)))).
private reduc unmarshall(Base64(C(r14,C(r15,Utf8(r18))))) = (r14,r15,r18).
private reduc mac(r19,r23,r24) = HmacSha1(r19,C(Utf8(r23),Utf8(r24))).
private reduc verify((HmacSha1(r27,C(Utf8(r28),Utf8(r29))),RsaEncrypt(PK(r25),r27),r29),SK(r25),r28) = ().

private fun Send/1.
private fun Accept/1.
private fun Unreachable/0.

free sendPUB. free acceptPUB.
free clientPUB. free serverPUB.

query ev:Ev(Accept(x))⇒ev:Ev(Send(x)).
query ev:Ev(Accept(x))⇒ev:Ev(Unreachable()).
query ev:Ev(Send(x))⇒ev:Ev(Unreachable()).

process
((!in(mkNoncePUB, (W9,K7));

new T30; out(K7, Name(T30)))
|(!in(rsaukeygenPUB, (W7,K5));

new T23; out(K5, SK(Name(T23))))
|(new httpchan; new respchan;

((!in(sendPUB, (addr16,msg17,K4));
out(httpchan, msg17); out(K4, ()))
|(!in(acceptPUB, (address15,K3));

in(httpchan, T15); out(K3, T15))
|(new T14;

let pwdA = base64(Name(T14)) in
new T12; let pkB = rsaupub(SK(Name(T12))) in
let address = S(Shttplocalhost8080pwdmacS()) in
((!in(clientPUB, (text5,K2));

event Ev(Send(text5));
new T10; let T9 =

(mac(Name(T10),pwdA,text5),
rsauencrypt(pkB,Name(T10)),text5) in

let T8 = marshall(T9) in
out(httpchan, T8); out(K2, ()))
|(!in(serverPUB, (W1,K1));

in(httpchan, T4);
let T3 = unmarshall(T4) in let (m1,en2,text3) = T3 in
let W2 = verify((m1,en2,text3),SK(Name(T12)),pwdA) in
event Ev(Accept(text3)); out(K1, ()))
|(out(publish, pkB)))))))

Table V. ProVerif script for Tiny (file tiny.pv, up to reformatting and renaming).
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Protocol Implementation
LOCs messages bytes symbols

Password-based MAC 38 1 208 16
Password-based MAC variant 75 1 238 21
Otway-Rees 148 4 74; 140; 134; 68 24; 40; 20; 11
WS Password-based signing 85 1 3835 394
WS X.509 signing 85 1 4650 389
WS Password-X.509 mutual auth 149 2 6206; 3187 486; 542
WS X.509 mutual auth 117 2 4533; 4836 304; 531

Table VI. Summary of example protocols

Protocol Security Goals Verification
queries secrecy authentication insiders clauses time

Password-based MAC 4 weak pwd msg no 69 0.8s
Password-based MAC variant 5 pwd msg, sender yes 213 2.2s
Otway-Rees 16 key msg, sender yes 155 1min50s
WS Password-based signing 5 no msg, sender yes 456 5.3s
WS X.509 signing 5 no msg, sender yes 460 2.6s
WS Password-X.509 mutual auth 15 no session yes 503 44min
WS X.509 mutual auth 18 msg session yes 612 51min

Table VII. Verification Results

complete a concrete, distributed implementation, we had to code detailed message formats,
left ambiguous in the description of the protocol. In the process, we inadvertently enabled
a typing attack, immediately found by verification. We experimented with a series of 16
authentication and secrecy queries; their verification takes a few minutes.

5. VERIFYING WEB SERVICES SECURITY PROTOCOLS

As a larger, more challenging case study than the example protocols of Section 4.5, we
implemented and verified several web services security protocols.

Web services are applications that exchange XML messages conforming to the SOAP
standard [W3C 2003]. To secure these exchanges, messages may include a security header,
defined in the WS-Security standard [OASIS 2004], that contains signatures, ciphertexts,
and a range of security elements, such as tokens that identify particular principals. Hence,
each secure web service implements a security protocol by composing mechanisms defined
in WS-Security. Previous analyses of such WS-Security protocols established correct-
ness theorems [Gordon and Pucella 2002; Bhargavan et al. 2005; Bhargavan et al. 2007c;
Kleiner and Roscoe 2004; 2005] and uncovered attacks [Bhargavan et al. 2005; Bhargavan
et al. 2004]. However, these analyses operated on models of protocols and not on their
implementations. In the rest of this section, we present the first verification results for the
security of interoperable web services implementations. We first detail our methodology
on an example web services security protocol implementation; we then present our verifi-
cation results for other such protocol implementations. These implementations rely on a
web services security library; we end the section with a description of the design of this
library.
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5.1 X.509 Mutual Authentication

As our main case study, we consider a mutual authentication protocol based on X.509
public key certificates. Both WSE and WCF implement this protocol as part of their sample
code.

We begin with an informal narration of the protocol, then provide a complete imple-
mentation in F#. The code is quite short, as it mostly relies on our WS-Security libraries.
We describe executions of the protocol, both symbolically (to produce readable message
traces) and concretely (to evaluate its performance). We also report on interoperability
testing with the WSE and WCF implementations. Finally, we present verification results
for this implementation.

Protocol Narration. The protocol has two roles, a client and a server. Every session of
the protocol involves a principal A acting as client and a principal B acting as server. Each
principal is associated with an RSA key-pair, consisting of a private key and a correspond-
ing public key; A’s key-pair is written (skA,pkA), and B’s key-pair is written (skB,pkB). We
assume that the principals have already exchanged their public key certificates. Hence, the
principals can identify one another using their public keys.

The goal of the protocol is to exchange two XML messages: a request and a response,
such that both the client and server can authenticate the two-message session and keep the
messages secret, even in the presence of an active attacker. To accomplish this goal, we
rely on XML digital signatures and XML Encryption. The abstract message sequence of
the protocol can be written as follows (where | denotes concatenation):

A→ B : TS |
RSA-SHA1{skA}[request | TS ] |
RSA-Encrypt{pkB}[symkey1] |
AES-Encrypt{symkey1}[request ]

B→ A : RSA-SHA1{skB}[response | RSA-SHA1{skA}[request | TS ]] |
RSA-Encrypt{pkA}[symkey2] |
AES-Encrypt{symkey2}[response]

The client acting for principal A sends a message request at time TS to the server acting
for B. To support message authentication, the client jointly signs request and TS using the
signature algorithm RSA-SHA1 keyed with A’s private key skA. To protect the secrecy
of the message, the client uses AES-Encrypt to encrypt it under a fresh symmetric key
symkey1. The symmetric key is in turn encrypted using RSA-Encrypt under pkB. (This
standard, two-step encryption is motivated by the relative costs of symmetric and asym-
metric encryptions for large messages.) In addition, the protocol assumes that RSA-SHA1
preserves the secrecy of the message.

The server repeatedly processes request messages. After accepting a request, the server
returns a response to the client. Like the request, the response is signed (using skB) then en-
crypted (using a fresh symkey2 encrypted under pkA). To correlate requests and responses,
the server jointly signs the response and the signature value of the request. (Otherwise,
since clients and servers may run several sessions in parallel, an attacker may confuse the
client by swapping two responses.) This correlation mechanism is called signature confir-
mation.

The security goals of the protocol are as follows:

—Request Authentication: B accepts a request from A with timestamp TS only if A sent
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such a request with timestamp TS.
—Response Authentication and Correlation: A accepts a response to its request only if B

sent response on receiving A’s request.
—Secrecy: the message payloads request and response are kept secret from all principals

other than A and B.

Note that although these goals require that the timestamps on both messages be authen-
ticated, they do not rely on the actual values of the timestamps. Our formal model treats
timestamps as opaque strings and does not, for instance, compare them as numbers.

Implementation. Our protocol implementation is listed in Table VIII. The module con-
sists of four functions: mkEnvelope and isEnvelope generate and check the protocol mes-
sages, while client and server implement the two protocol roles.

To parse and generate standards-compliant SOAP envelopes, and to sign and encrypt
XML elements, we rely on functions of the web services security library. As an example,
consider the mkEnvelope function. Depending on its arguments, mkEnvelope constructs
either a request message or a response message. To construct a request, it takes a message
body containing the request, the X.509 entry snd for the sending principal A, the X.509
certificate rcvcert for the receiving principal B, and an empty list corr. (When constructing
a response, snd is the X.509 entry for B, rcvcert is the X.509 certificate for A, and corr
contains the signature value of the request.) The code for mkEnvelope successively calls
the following library functions, defined in modules wssecurity.fs and soap.fs:

—mkTimestamp and genTimestamp create a new timestamp and serialize it to XML;
—mkX509Signature generates the XML digital signature for the message;
—mkX509Encdatakey generates the two encrypted components;
—mkX509SecurityHeader generates the security header;
—genEncryptedEnvelope generates the whole SOAP envelope for the message.

Finally, the function returns the envelope (for sending) paired with its signature value (kept
for correlating the response).

Unlike mkEnvelope and isEnvelope, the client and server functions are part of the at-
tacker interface; both these functions are included in the interface X509MutualAuth.fsi for
the protocol module X509MutualAuth.fs:

val client: str→str→str→str→unit
val server: str→str→str→unit

Hence, an attacker can call these functions to initiate sessions and instantiate roles.
The four arguments to client are the name of the client and server principals (clPrin,

srvPrin), and the HTTP URI and SOAP action (servUri, servAction) that identify the server
location. The client first calls the request function from the service.fs module (described in
the next subsection) to compute the XML request payload (req). It then calls the logsecret
function to log this payload as a secret; if the attacker ever obtains a value v logged as
secret, it can call a checksecret function to trigger an event NotSecret(v), indicating that
v is no longer secret. We use this event to specify our secrecy goals; it is more flexi-
ble than the usual attacker:v specification in ProVerif, since it does not require the secret
value v to be defined at the top level of the program. It then instantiates both principals;
it gets the X.509 entry (cl) for clPrin from a private database; the entry consists of an
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(∗ Opening Library Modules ∗)
open Data (∗ Standard datatypes: str, bytes, item ∗)
open Events (∗ Protocol Events ∗)

(∗ Constructing Messages ∗)
let mkEnvelope (body:item) (snd:Prins.principalX) (rcvcert:bytes)

(corr:item list) : item∗bytes =
let ts = Wssecurity.genTimestamp(Wssecurity.mkTimestamp()) in
let (dsig,sv) = Wssecurity.mkX509Signature snd (body::ts::corr) in
let (ed,ek) = Wssecurity.mkX509Encdatakey rcvcert body in
let sec = Wssecurity.mkX509SecurityHeader (Prins.cert snd) ek ts dsig in
let envXml = Soap.genEncryptedEnvelope [sec] ed in
(envXml,sv)

(∗ Checking Messages ∗)
let isEnvelope (envXml:item) (sndcert:bytes) (rcv:Prins.principalX)

(corr:item list) : item∗bytes =
let ([sec],ed) = Soap.parseEncryptedEnvelope envXml in
let (ts,ek,dsig) = Wssecurity.isX509SecurityHeader sec in
let body = Wssecurity.isX509Encdatakey rcv ek ed in
let sv = Wssecurity.isX509Signature dsig sndcert (body::ts::corr) in
(body,sv)

(∗ Client Role ∗)
let client (clPrin: str) (srvPrin:str) (servUri:str) (servAction:str) =

let req = Service.request () in
logsecret req [srvPrin];
let cl = Prins.getX509 clPrin in
let srvCert = Prins.getX509Cert srvPrin in
let (reqXml,sv) = mkEnvelope req cl srvCert [] in
log (ClientSend(clPrin,srvPrin,req));
let respXml = Net.request servUri servAction reqXml in
let sc = Wssecurity.genSigConf sv in
let (resp, ) = isEnvelope respXml srvCert cl [sc] in
let = Service.isResponse resp in
log (ClientCorr(clPrin,srvPrin,req,resp))

(∗ Server Role ∗)
let server (clPrin:str) (srvPrin:str) (servUri:str) =

let clCert = Prins.getX509Cert clPrin in
let srv = Prins.getX509 srvPrin in
let reqXml = Net.accept servUri in
let (req,sv) = isEnvelope reqXml clCert srv [] in
let = Service.isRequest req in
log (ServerRecv(clPrin,srvPrin,req));
let resp = Service.response req in
logsecret resp [clPrin];
let sc = Wssecurity.genSigConf sv in
let (respXml, ) = mkEnvelope resp srv clCert [sc] in
log (ServerCorr(clPrin,srvPrin,req,resp));
Net.respond respXml

Table VIII. Protocol Module: X509MutualAuth.fs
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X.509 certificate and its associated private key; it then extracts the certificate (srvCert)
for the server principal srvPrin. Next, it prepares the request message (reqXml), using
mkEnvelope, logs an event ClientSend(clPrin,srvPrin,req) to indicate that it is sending the
first message, and makes an HTTP request to the server, using Net.request. The client
remembers the signature value (sv) of the request for correlating the response, and uses
it to construct the expected signature confirmation element (sc). When the client receives
a response (respXml), it uses isEnvelope to check that the response message is valid and
that it includes the signature confirmation (sc). It calls isResponse to check that the body
of the response message is a valid application-level response, and then logs the event
ClientCorr(clPrin,srvPrin,req,resp) indicating that a valid response has been received and
correlated with the request.

The server proceeds symmetrically: it uses the client certificate and the server X.509
entry to check requests and issue responses. After accepting a request, the server logs an
event ServerRecv(clPrin,srvPrin,req); it then calls Service.response(req) to compute the
response resp, and logs the event ServerCorr(clPrin,srvPrin,req,resp) before issuing the
response.

Protocol Execution. To run the protocol, we write a main module X509Main.fs, listed
below. (This module is not used for verification; formally, it is just a simple instance of the
attackers considered in our theorems.)

let clntPrin = S "client.com"
let srvPrin = S "localhost"
do Prins.genX509 clntPrin
do Prins.genX509 srvPrin
do match Sys.argv.(1) with
| "client"→client clntPrin srvPrin Service.uri Service.action;
| "server"→server clntPrin srvPrin Service.uri;
| "local"→Pi.fork (fun ()→server clntPrin srvPrin Service.uri);

client clntPrin srvPrin Service.uri Service.action

This module first instantiates the client and server principals (identified by their X.509
common names “client.com” and “localhost”), and then runs either the client, or the server,
or both, depending on the command-line argument. The X509Main.fs module is used only
for executing the protocol; they are not used for verification.

We also write a module service.fs to encode an exemplary addition service. The module
consists of two functions: Service.request extracts two numbers from the command line
and returns them in a request body; Service.response computes the sum of the two numbers
in a request and returns it in a response body.

For verification, we write a dual, symbolic implementation of this module that gener-
alizes the two functions by allowing the attacker to choose some payloads: the symbolic
version of Service.request (Service.response) returns a request (response) body that it ei-
ther received from the attacker or it computed from a secret value. Hence, our security
goals require request and response authentication even when the attacker is allowed to
choose arbitrary payloads, and require secrecy of the secret payloads.

Symbolic Messages. To run the protocol symbolically, we compile the X509MutualAuth.fs
and X509Main.fs modules with the web services library and the symbolic version of the
modules crypto.fs, net.fs, prins.fs, and service.fs to generate an executable run.exe. We can
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<Envelope>
<Header>

<Security>

ts1 = <Timestamp Id=’Timestamp’>
<Created>Now1</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-client.com’>

X509(Root,client.com,sha1RSA,PK(rsa secret1))</>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid4</></></></></>

<CipherData>
<CipherValue>RSA−Enc{PK(rsa secret3)}[key5]</></>

<ReferenceList>
<DataReference URI=’guid6’ /></></>

<Signature>
si1 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms><Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>req</>)</></>
<Reference URI=’Timestamp’>

<Transforms><Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></></>

<SignatureValue>
sv1 = RSA−SHA1{rsa secret1}[si]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-client.com’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid6’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData>

<CipherValue>AES−Enc{key5}[
req = <Add>

<n1>100</>
<n2>15.99</></></>]</></></></></>

Table IX. Symbolic Request Message
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<Envelope>
<Header>

<Security>

ts2 = <Timestamp Id=’Timestamp’>
<Created>Now2</>
<Expires>PlusOneMinute</></>

<BinarySecurityToken EncodingType=’Base64Binary’ ValueType=’X509v3’
Id=’X509Token-localhost’>

X509(Root,localhost,sha1RSA,PK(rsa secret3))</>
<EncryptedKey Id=’Encrkey’>

<EncryptionMethod Algorithm=’rsa-1_5’ />
<KeyInfo>

<SecurityTokenReference>
<X509Data>

<X509IssuerSerial>
<X509IssuerName>Root</>
<X509SerialNumber>guid2</></></></></>

<CipherData><CipherValue>RSA−Enc{PK(rsa secret1)}[key7]</></>
<ReferenceList>

<DataReference URI=’guid8’ /></></>
<Signature>

si2 = <SignedInfo>

<CanonicalizationMethod Algorithm=’xml-exc-c14n#’ />
<SignatureMethod Algorithm=’rsa-sha1’ />
<Reference URI=’Body’>

<Transforms><Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<Body Id=’Body’>resp</>)</></>
<Reference URI=’Timestamp’>

<Transforms><Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(ts)</></>

<Reference URI=’SigConf’>
<Transforms><Transform Algorithm=’xml-exc-c14n#’ /></>
<DigestMethod Algorithm=’sha1’ />
<DigestValue>SHA1(

<SignatureConfirmation Value=’sv1’ Id=’SigConf’ />
)</></></>

<SignatureValue>
sv2 = RSA−SHA1{rsa secret3}[si2]

</>
<KeyInfo>

<SecurityTokenReference>
<Reference URI=’X509Token-localhost’ ValueType=’X509v3’ />

</></></></></>
<Body Id=’Body’>

<EncryptedData Id=’guid8’ Type=’Content’>
<EncryptionMethod Algorithm=’aes128-cbc’ />
<CipherData><CipherValue>AES−Enc{key7}[

resp = <AddResponse>
<n>115.99</></></>]</></></></></>

Table X. Symbolic Response Message
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then execute the command run local 100 15.99, for example. Our implementation pretty-
prints the communicated messages, using an abbreviated XML-like format with embedded
symbolic expressions. Table IX shows the first message of the protocol; Table X shows the
second message. The first message has 304 symbols while the second has 531.

In Table IX, ts1 is the symbolic timestamp and req is the serialized request. The times-
tamp is modeled as an XML element containing a fresh globally unique string (Now1)
representing its creation time and a constant expiration time. The message has a security
header that contains ts1, an encrypted symmetric key key1, and an XML digital signature
for req and ts1. The key key1 is encrypted using the public key certificate for the server; in
this message the certificate is issued by Root and has a serial number guid4 and public key
PK(rsa secret3). The XML signature value sv1 is computed as the RSA−SHA1 signature
of the element si, which in turn contains the SHA1 hashes of req and ts1. Finally, the body
of the message is the request req encrypted under the symmetric key key5.

The message in Table X can be read similarly; the main difference is that the signature
includes a new <SignatureConfirmation> element containing the signature value sv1 from
the first message.

Concrete runs and Performance. To run the protocol concretely, we compile
X509MutualAuth.fs, X509Main.fs, and the web services library with the concrete versions
of crypto.fs, net.fs, prins.fs, and service.fs to generate a new run.exe. We can then execute
the command run server on one machine, and execute run client 100 15.99 on another. The
resulting 4-kilobyte messages are instances of the symbolic messages, where each symbol
expression is replaced by a concrete, string-encoded value. For instance, the timestamp ts1
is now the concrete XML element

<Timestamp Id="Timestamp"
xmlns="http://...wss-wssecurity-utility-1.0.xsd">
<Created>2006−04−27T09:12:17Z</Created>
<Expires>2006−04−27T09:13:17Z</Expires>

</Timestamp>

and the signature value sv1 is now the 172-character base64-encoded string

4Bpd7K+2n6eW+brpEwYO9hdwHrcNPOAoK+Bqn4........KCstFrZQ24=

To test our concrete implementation for interoperability, we run our client with servers
implemented with WSE and WCF. The response message generated by the WCF server
does not include the X.509 certificate of the server, since the client is expected to have it
already. We easily modify our client to ignore this difference and it successfully executes
the protocol with WCF. The WSE server, however, does not support the signature confir-
mation mechanism for message correlation. Moreover, the key-sizes and encryption algo-
rithms supported by WSE are different from and more limited than WCF. After disabling
signature confirmation and using WSE key sizes and algorithms, our client successfully
executes the protocol with the WSE server.

Each session of our implementation takes 1.2 seconds to complete the protocol. We
expect that this is comparable to the performance of the WSE and WCF implementations
because all three implementations use the same .NET cryptography libraries, XML parsers,
and X.509 certificate stores. Indeed, in the default configuration, both WSE and WCF take
around one second per session for our protocol. A direct comparison of the performance

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



40 · Karthikeyan Bhargavan et al.

of the three protocol implementations has little significance, because WCF, and to a lesser
extent WSE, is a full web services implementation running within a web server, whereas
ours is a partial implementation focusing on security. The WSE implementation consists
of around 185 lines of C# code, while the WCF implementation consists of around 70 lines
of C# code and 160 lines of security-related XML configuration. In contrast, our imple-
mentation consists of 104 lines of F# code that can be executed concretely or symbolically,
as well as automatically verified.

Security Goals and Theorem. We use the fs2pv/ProVerif tool chain to verify our pro-
tocol implementation against its security goals, both before and after modifying it for in-
teroperability with WCF. Recall the three security goals for our protocol. Let G be these
security goals expressed as ProVerif queries:

query ev:ServerRecv(u,s,x)⇒ev:ClientSend(u, ,x) | ev:Leak(u).
query ev:ClientCorr(u,s,x,y)⇒ev:ServerCorr(u,s,x,y) | ev:Leak(s).
query ev:NotSecret(v)⇒

(ev:ClientSend(u,s,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(s))
| (ev:ServerCorr(u,s,r,DataTxt(DataBase64(DataFresh(v)))) & ev:Leak(u)).

—The first query formalizes request authentication: it says that, if the server principal s
accepts a request x from a client principal u (ServerRecv(u,s,x)), then u has sent the
request x (ClientSend(u, ,x)) or else u has been compromised—the Prins library emits
the event Leak(u) to record that the attacker has been given the keys for principal u.

—The second query formalizes response authentication and correlation: if the client prin-
cipal u accepts a response y for request x from server principal s (ClientCorr(u,s,x,y)),
then s must have sent the response y to u for request x (ServerCorr(u,s,x,y)), or else s
has been compromised.

—The third query expresses the secrecy of the request and response. It says that the only
secrets v available to the attacker (NotSecret(v)) are those that have been sent within
requests or responses to compromised servers or clients, respectively.

Let S be the F# system consisting of the X509MutualAuth.fs module, the web services
library, and the symbolic implementations for the modules crypto.fs, net.fs, prins.fs, and
service.fs. Let Ipub be the attacker interface from Section 3 extended with the protocol
interface X509MutualAuth.fsi. We use fs2pv to compile S to a script consisting of 988
lines of pi calculus code. Then we run ProVerif to verify all three queries in G above. By
Theorem 1, we obtain:

THEOREM 2. For each q ∈ G, the system S is robustly safe for q and Ipub.

Hence, we verify the security of our protocol implementation and all the functions it uses
from the web services library against a powerful attacker model. The only modules we
trust to be correct, and do not verify, are crypto.fs, net.fs, prins.fs, and service.fs.

Vulnerabilities and Attacks. Modifying our protocol implementation for for interoper-
ability to WCF makes no difference to protocol correctness: we are still able to automati-
cally establish Theorem 2. The modification for WSE, however, weakens the protocol: the
second query (response authentication) fails and ProVerif reports an attack. Indeed, since
the modified protocol does not use signature confirmation, an attacker can forward to the
client a response generated by the server in reply to another request by the same client.
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Trusted Library (+ CLR) Web Services Library Protocol Module ProVerif Script
Concrete Symbolic

Modules LoC LoC Modules LoC LoC LoC
4 793 575 5 1648 85-149 1090-1167

Table XI. Sizes of implementation modules and generated scripts

As a result, requests and responses are not securely correlated—this is a known issue in
WS-Security 1.0, which led to the design of signature confirmation in WS-Security 1.1.
More precisely, we can still capture a weaker notion of response authentication that holds
for WSE, using the following, weaker variant of the second query:

ev:ClientCorr(u,s,x,y)⇒ev:ServerCorr( ,s, ,y) | ev:Leak(s).

This query states that the client authenticates the server s and the response message y,
but does not correlate y with the request x. We verify that all variants of our protocol
implementation satisfy this query.

The X.509 mutual authentication protocol presented in this section meets our specific
set of authentication and secrecy goals, but is not unconditionally secure. We discuss two
of its limitations.

—The protocol fails to guarantee certain other security properties. For instance, it fails
to protect (stronger variants of) secrecy of request or response against guessing attacks,
when these messages have low entropy. If such protection is required, we can either
encrypt the signature in addition to the message content, or we can add a nonce to the
message content.

—The protocol also fails to prevent certain replay attacks on the server. If the client pro-
duces a new timestamp for each request and if the server maintains a cache of these
timestamps, then replays can be detected and discarded. Indeed, our formal model gen-
erates fresh globally unique timestamps for each message. Alternatively, we can include
a unique message identifier in each request.

We also coded stronger variants of the protocol that meet at least the requirements of Theo-
rem 2 and also address these limitations, and verified their implementation using additional
queries. We omit the details for the sake of brevity.

5.2 Verification Results for Web Services Protocols

In addition to the X.509 Mutual Authentication protocol, we have implemented several
other sample WSE and WCF protocols in F# and verified them. Tables VI and VII report
our experimental results for four such protocols. WS Password-based signing is the web
services version of our simple password-based authentication protocol of Section 2; it
consists of a single SOAP message from a client to a web service, where the message
contains an embedded XML digital signature keyed using a shared password. WS X.509
signing is a single message protocol where the message is signed using a private key. WS
Password-X.509 mutual auth is a request-response protocol where the request is signed
using a shared password and the response is signed using a private key. Finally, WS X.509
mutual auth is our case study implementing X.509 mutual authentication.

Table XI breaks down the size of the protocol implementation in terms of its logical
components. The trusted library consists of four modules written in 793 lines of code and
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uses functionality provided by the CLR, such as System.Cryptography for cryptographic
functions; the symbolic model of these modules and the underlying CLR is written in 575
lines of F#. The verified web services library consists of five modules written in 1648 lines
of code. The protocol module varies between the different examples and takes around a
hundred lines. The ProVerif script is generated from the symbolic trusted library, the web
services library and the protocol module; it varies between the different examples and is
around a thousand lines of pi calculus.

5.3 Implementing the Verified WS-Security Library

Programming a security protocol based on WS-Security is an exercise in modularity. The
messages of the protocol include elements, such as timestamps, addresses, encrypted keys,
and signatures, that are defined by different specifications. Many of these elements even-
tually rely on low-level cryptographic computations. To assemble the complete SOAP
message, each element must be encoded in some XML format.

To support this kind of programming, we structure our WS-Security library as follows.
For each specification, we define an F# module Spec.fs and an interface Spec.fsi. Within
a module, each high-level message component is defined as a datatype T. Operations to
generate and check elements of type T (typically using cryptographic functions) are written
as functions mkT and isT. Finally, for each datatype T, the module defines functions genT
and parseT to translate elements of T to and from XML items. In this way, users of the
library can ignore the XML representation and instead program with the more abstract
representation T and its corresponding functions.

For instance, the soap.fs module partially implements the SOAP standard [W3C 2003].
It has the following interface:

type envelope = { header: item list; body: item }
val parseEnvelope: item→envelope
val genEnvelope: envelope→ item

A SOAP envelope is abstractly represented as a record that contains a list of headers and
a body. The functions parseEnvelope and genEnvelope translate such records to and from
XML items. Since there is no cryptography involved in constructing an envelope, there are
no other functions in the interface.

Similarly, the wsaddressing.fs module implements the headers of the WS-Addressing
specification [W3C 2004]; it has a record type that abstractly represents optional headers
and it has functions to translate records to and from SOAP header elements.

The full WS-Security library consists of five F# modules, including both soap.fs and
wsaddressing.fs, with a total of 1648 lines of code. We believe that these modules are
usable not only by programmers aiming to write verifiable web services security protocols,
but also by protocol designers looking for precise executable specifications for the web
services standards. In the rest of this section, we look in more detail at the modules that
implement the security mechanisms of WS-Security.

XML Signature. The XML Signature standard “specifies XML syntax and processing
rules for creating and representing digital signatures.” [Eastlake et al. 2002] An XML sig-
nature, as defined in the standard, cryptographically attests to the integrity and authenticity
of a set of XML items. An example is the <Signature> element in the protocol mes-
sages in Tables IX and X. It includes metadata describing the computation of the signature
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value: each signed element is first transformed using the specified canonicalization method
(xml−exc−c14n), then hashed using the specified digest method (SHA1); the digests and
metadata are finally signed using the specified signature method (RSA−SHA1). The re-
cipient of such a signature recomputes the digests and checks the received signature value
before accepting the signed elements as authentic.

In our library, the xmldsig.fs module implements XML signatures. The datatype for
an XML signature is a record dsig that includes the relevant contents of the <Signature>
element as well as additional values needed for computing and checking the signature:

type dsig = {
siginfo: item;
sigval: bytes;
keyinfo: item;
signkey: keybytes option;
verifkey: keybytes option;
targets: item list }

The field siginfo corresponds to the <SignedInfo> element containing the metadata and
all the digests; sigval contains the signature value; keyinfo identifies the signing key. The
module contains auxiliary functions for generating siginfo from the list of signed ele-
ments (targets). To compute the sigval, we use a signing key (signkey); to check a received
sigval, we use the corresponding verification key (verifkey).

The module provides functions for constructing and checking signatures using both sym-
metric and asymmetric signing algorithms, such as HMAC−SHA1 and RSA−SHA1:

val mkSignature: item list→ item→keybytes→str→dsig
val isSignature: item list→keybytes→dsig→bytes

The function call, mkSignature targets keyinfo signkey alg, constructs a dsig element for
the elements listed in targets, using signature key signkey (identified by keyinfo) and sign-
ing algorithm alg. Conversely, isSignature targets verifkey dsig uses verifkey to check that
dsig is a valid XML signature computed from targets and returns the signature value, so
that it can be used for signature confirmation. The full module consists of 307 lines of
code.

There are several challenges in implementing XML Signature. First, our functions must
correctly implement the low-level details of the signature. This includes not only the details
of the XML format such as name spaces and attributes, but also the use of the canonical-
ization, digest, and signature algorithms. In xmldsig.fs, the functions parseSignature and
genSignature translate records of type dsig to and from XML. We test these functions by
inspecting the message traces as well as by extensive interoperability testing with other
implementations. Our datatype and functions hide these details from the programmer, so
all programs using these functions are guaranteed to generate standards-conformant XML
signatures.

Second, the standard offers several options for each step of signature computation and
an implementation is expected to support a subset. In our implementation, we choose
one canonicalization and one digest algorithm, but allow two signature algorithms and
several ways of referring to signing keys. These choices do not affect the module interface:
the types and functions remain the same. Hence, we can easily add implementations for
additional algorithms as the need arises and rely on the F# module and type system to
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integrate them.

XML Encryption. The XML Encryption standard “specifies a process for encrypting
data and representing the result in XML” [Eastlake et al. 2002]. When parts of a message
are to be encrypted using a symmetric key, the encrypted data mechanism can be used;
when only an asymmetric key is available for encryption, one first generates a fresh sym-
metric key, uses it to encrypt data, and then protects the symmetric key using the encrypted
key mechanism. Both these mechanisms are depicted in the protocol messages in Tables IX
and X; the <EncryptedData> element contains a cipher value computed by applying a
symmetric encryption algorithm (AES−128) to the message body using a key encrypted
within an <EncryptedKey> element using an asymmetric algorithm (RSA−1.5).

The xmlenc.fs module implements XML encryption, in a similar style to xmldsig.fs. It
defines two record types encdata and encrkey representing encrypted data and encrypted
keys. It provides functions to construct (encrypt) and decrypt records of these types and
functions to translate them to and from XML. It also provides functions to combine com-
mon encryption tasks; for instance, the function call, mkEncDatakey ek str plain, generates
a fresh symmetric key, uses it to encrypt the plain-text plain as an encrypted data block,
uses the public-key ek to in turn encrypt the symmetric key, and returns both the encrypted
data and the encrypted key.

The module xmlenc.fs is implemented in 419 lines of code. It implements two symmet-
ric algorithms for encrypting data, AES−128 and AES−256, and two asymmetric algo-
rithms for encrypting keys, RSA−1.5 and RSA−OAEP. Our choices are motivated by the
default settings in WSE and WCF; WSE supports AES−128 and RSA−1.5, while WCF
uses AES−256 and RSA−OAEP.

WS-Security. The wssecurity.fs module implements the content of the security header,
as specified in the WS-Security standard [OASIS 2004]. The security header contains
several optional elements, such as a message timestamp, tokens identifying principals,
XML signatures, and encrypted keys. The record representing this header is as follows:

type security = {
timestamp: ts;
utoks: utok list;
xtoks: xtok list;
ekeys: encrkey list;
dsigs: dsig list }

It consists of a timestamp (ts), generated using the mkTimeStamp function, username to-
kens (utoks) identifying users and passwords, X.509 tokens (xtoks) containing public-key
certificates, encrypted keys (ekeys), and XML signatures (dsigs).

The module offers functions for constructing different kinds of tokens and for generating
signatures and encrypted blocks using them. The call mkX509Signature prin targets, for
instance, generates an X.509 token corresponding to principal prin and uses its private
key to compute an XML signature for the element list targets. The module also provides
functions for translating security headers to and from XML. For instance, the function
genX509SecurityHeader takes a certificate, an encrypted key, a timestamp, and a signature
and generates the corresponding XML security header; parseX509SecurityHeader does the
reverse.
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The wssecurity.fs module consists of 538 lines of F# code. It does not yet support several
token types defined in WS-Security, such as Kerberos and SAML tokens.

6. CONCLUSIONS

We describe an architecture and programming model for security protocols. For produc-
tion use, protocol code runs against concrete cryptography and low-level networking li-
braries. For initial development, the same code runs against symbolic cryptography and
intra-process communication libraries. For verification, much of the code translates to a
low-level pi calculus model for analysis against a Dolev-Yao attacker. The attacker can be
understood and customized in source-level terms as an arbitrary program running against
an interface exported by the protocol code.

We use this architecture to build and verify several web services security protocol im-
plementations; our tools find vulnerabilities as well as prove strong security theorems.

Our prototype implementation is the first, we believe, to extract verifiable models from
code implementing standard security protocols, and hence able to interoperate with other
implementations. Our case studies are among the largest examples of verified crypto-
graphic protocol implementations to date. Since the publication of the conference version
of this paper, our verification tool, fs2pv, has been used to verify implementations of the
Windows Cardspace protocol [Bhargavan et al. 2008a], which is built using several web
services security protocols, and the Transport Layer Security (TLS) protocol [Bhargavan
et al. 2008b]. In both these studies, our tools were able to prove strong authentication and
security properties of thousands of lines of interoperable protocol code. Our prototype has
many limitations; still, we conclude that it significantly reduces the gap between symbolic
models of cryptographic protocols and their implementations.

Limits of our model. As usual, formal security guarantees hold only within the bound-
aries of the model being considered. Automated model extraction, such as ours, enables
the formal verification of large, detailed models closely related to implementations. In our
experience, such models are more likely to encompass security flaws than those focusing
on protocols in isolation. Independently of our work, modelling can be refined in vari-
ous directions. Certified compilers and runtime environments can give strong guarantees
that program executions comply with their formal semantics; in our setting, they may help
bridge the gap between the semantics of F and a low-level model of its native-code exe-
cution, dealing for instance with memory safety. Besides, lower level attacks (based for
instance on timing analysis, power analysis, or fault injection) fall outside the scope of our
model. We would need more precise, ad hoc programming models to account for them.

Our approach also crucially relies on the soundness of symbolic cryptography with re-
gards to one implementation of concrete cryptography, which is far from obvious. Prag-
matically, our modelling of symbolic cryptography is flexible enough to accommodate
many known weaknesses of cryptographic algorithms (introducing for instance symbolic
cryptographic functions “for the attacker only”). There is a lot of interesting research on
reconciling symbolic cryptography with more precise computational models [Abadi and
Rogaway 2002; Backes et al. 2003], and on automatically verifying computational models
of protocols [Blanchet 2007]. Using an architecture similar to ours, computational models
have recently been extracted and automatically verified for fragments of an implementa-
tion of the TLS protocol [Bhargavan et al. 2008b]. Still, for the time being, these tools do
not support automated analyses on the scale needed for our protocols.
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Related work. The ideas of modelling protocol roles as functions and modelling an ac-
tive attacker as an arbitrary functional context appear earlier in Sumii and Pierce’s studies
of cryptographic protocols within a lambda calculus [Sumii and Pierce 2001; 2004]. Unlike
our functional language, which has state and concurrency, their calculus cannot directly
capture linearity properties (such as replay detection via nonces), as its only imperative
feature is name generation. Several systems [Perrig et al. 2001; Muller and Millen 2001;
Lukell et al. 2003; Pozza et al. 2004] operate in the reverse direction, and generate runnable
code from abstract models of cryptographic protocols in formalisms such as strand spaces,
CAPSL, and the spi calculus. These systems need to augment the underlying formalisms
to express implementation details that are ignored in proofs, such as message sizes and
error handlers. Going further in the direction of growing a formalism into a programming
language, Guttman et al. [2005] propose a new programming language CPPL for writing
security protocols; CPPL combines features for communication and cryptography with a
trust management engine for logically-defined authorization checks. CPPL programs can
be verified using strand space techniques, although there is no automatic support for this
at present. A limitation of all of these systems is that they do not implement standard
message formats and hence do not interoperate with other implementations. In terms of
engineering effort, it seems easier to achieve interoperability by starting from an existing
general purpose language such as F# than by developing a new compiler.

Giambiagi and Dam [2004] take a different approach to showing the conformance of
implementation to model. They neither translate model to code, nor code to model. Instead,
they assume both are provided by the programmer, and develop a theory to show that the
information flows allowed by the implementation of a cryptographic protocol are none
other than those allowed by the abstract model of the protocol. They treat the abstract
protocol as a specification for the implementation, and implicitly assume correctness of
the abstract protocol.

Askarov and Sabelfeld [2005] report a substantial distributed implementation within the
Jif security-typed language of a cryptographic protocol for online poker without a trusted
third party. Their goal is to prevent some insecure information flows by typing. They do
not derive a formal model of the protocol from their code.

There are only a few works on compiling implementation files for cryptographic pro-
tocols to formal models. Bhargavan, Fournet, and Gordon [2004] translate the policy
files for web services to the TulaFale modelling language [Bhargavan, Fournet, Gordon,
and Pucella 2004], for verification by compilation to ProVerif. This translation can de-
tect protocol errors in policy settings, but applies to configuration files rather than exe-
cutable source code. Other symbolic modelling [Gordon and Pucella 2002; Bhargavan
et al. 2005; Bhargavan et al. 2007c; Kleiner and Roscoe 2004; 2005] of web services se-
curity protocols has uncovered a range of potential attacks, but has no formal connection
to source code. Goubault-Larrecq and Parrennes [2005] are the first to derive a Dolev-Yao
model from implementation code written in C. Their tool Csur performs an interprocedural
points-to analysis on C code to yield Horn clauses suitable for input to a resolution prover.
They demonstrate Csur on code implementing the initiator role of the Needham-Schroeder
public-key protocol. Elyjah [O’Shea 2006] derives symbolic models in the LySa process
calculus from implementation code in Java, and verifies properties of bounded instances of
the models using an analyzer for LySa [Bodei et al. 2003]. The Java code represents var-
ious protocol examples as concurrent processes within a single machine, and uses custom
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message formats.
There is also recent research on verifying implementations of cryptographic algorithms,

as opposed to protocols. For instance, Cryptol [Galois Connections 2005] is a language-
based approach to verifying implementations of algorithms such as AES.

Acknowledgments. James Margetson and Don Syme helped us enormously with using
and adapting the F# compiler. Bruno Blanchet helped us with understanding and debugging
ProVerif scripts. Tony Hoare, David Langworthy, and the anonymous referees suggested
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A. AN OBSERVATIONAL EQUIVALENCE FOR THE PI CALCULUS

In this appendix, we define an observational equivalence relation, which we use in the
pi calculus proofs in Appendix B. We begin with a definition of evaluation contexts. A
context is a process containing a hole [ ]; we write E[P] for the outcome of filling the hole
in E with the process P.

Evaluation Context:

E ::= [ ] | new a;E | (P | E) evaluation context

LEMMA 3. If P is safe for q then new a;P is safe for q.

(Recall that our definition of queries excludes a from occurring in q.)

LEMMA 4. If ∆s process P is robustly safe for q and the process E[0] is a ∆s-opponent
then E[P] is safe for q.

Proof: If E[0] is a ∆s-opponent then E[P] ≡ new as;(P | O) for some names as and a
∆s-opponent O. By definition, P | O is safe for q. By Lemma 3, new as;(P | O) is safe
for q. Safety is preserved by the relation ≡, so E[P] is safe for q.

We define an observational equivalence on processes induced by query satisfaction.

Observational Equivalence: P≈ Q

Let ≈ be the largest symmetric relation on closed processes such that P ≈ Q implies: (1)
E[P] ≈ E[Q] for all closed evaluation contexts E; (2) P→ P′ implies there is Q′ with
P′ ≈ Q′ and Q→∗≡ Q′; and (3) P |= q implies Q |= q for all q.

Recall the standard pi calculus notion of a forwarder: let a→ b be !in(a,z).out(b,z).
We use forwarders in our translation and rely on the following property phrased in terms
of observational equivalence. We give a detailed proof outline for this standard property;
there are proofs of similar properties in the literature [Merro and Sangiorgi 1998; Fournet
and Gonthier 2005].

LEMMA 5. Let P be a process that uses the name a only for sending asynchronous
messages. Then we have the observational equivalence new a;(P | a→ b)≈ P{b/a}.

We rely on a similar property for eliminating channel publish in the proof of Lemma 21.

LEMMA 6. Let Q be a process with no event in evaluation context, xs a tuple that
carries the free names and variables of Q, C a context, and publish a fresh channel. We
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have

C[Q]≈ new publish;((!in(publish,xs);Q) |C[out(publish,xs)])

B. PROOFS OF CORRESPONDENCE AND SAFETY THEOREMS

This appendix introduces definitions and lemmas for proving Theorem 1, that robust safety
for programs in F follows from robust safety of the translation of F to the pi calculus. Many
proof details are omitted; they appear in the technical report [Bhargavan et al. 2007b].

The main difficulty in this development concerns the statement of Lemmas 16 and 17,
which relate the reduction of an F configuration to reduction steps of its translation into the
pi calculus. The difficulty concerns the reduction step needed to return a result from the
process translation of a function call. There is no exactly corresponding reduction at the F
level, as the reduction rule for the function call simply inlines the function body. To solve
this problem, we phrase Lemmas 16 and 17 in terms of an auxiliary guarded reduction
relation, which allows certain guarded reductions to be anticipated. Hence, the step of
calling a function at the F level corresponds at the process level to an ordinary reduction
(for the call) followed by a guarded reduction (for the return).

Theorem 1 concerns a system S and an interface Ipub. Throughout this section, we fix
these variables and assume the following. As opposed to S, we let Ŝ range over arbitrary
systems. (Since our translation does not operate on values, our development does not
depend on the details of the ambient declarations.)

Assumptions about system S and interface Ipub:

We assume S :: Ipub and ambient declarations ∆s[[S :: Ipub]].

In addition to the translations of Section 4.3, we translate F running configurations into
pi calculus processes as follows; the main translation function C [[C]] is defined in terms of
an auxiliary translation C ′[[C]].

Processes C [[C]] and C ′[[C]] representing configuration C:

C [[C]] 4= new as;C ′[[C]] where as = fn(C)

C ′[[C1 |C2]]
4= C ′[[C1]] | C ′[[C2]]

C ′[[event M]] 4= event M
C ′[[Ŝ]] 4= S [[Ŝ]](0)

The translated processes, as shown by the next two lemmas, respect structural equiva-
lence as well as substitution of values. These lemmas are useful in proving the reduction
correspondence. To state the second lemma, we need some additional terminology. We
say that x is bound in a declaration when the declaration takes the form let x = e. We say
that x is bound in a system S = d1 . . .dn when x is bound in di for some i ∈ 1..n.

LEMMA 7. If C ≡C′ then C ′[[C]]≡ C ′[[C′]].

LEMMA 8 SUBSTITUTION.

(1) E [[e]](x,P){M/y}= E [[e{M/y}]](x,P{M/y}) if x 6= y and x /∈ fv(M).
(2) S [[d]](P){M/x}= S [[d{M/x}]](P{M/x}) if x not bound by d.
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(3) S [[Ŝ]](P){M/x}= S [[Ŝ{M/x}]](P{M/x}) if x not bound by Ŝ.

To understand the relationship between the operational semantics of an F configuration,
and its translation to a process, it is convenient to define a specialized guarded reduction
relation, written P ; Q. A guarded reduction of a process anticipates a reduction step
that is currently guarded, but may be enabled after subsequent reductions. In particular,
we define guarded reduction to anticipate the eventual transmission of a message on a
continuation, so that new k;(E [[e]](x,out(k,x)) | in(k,x);P) ; E [[e]](x,P). The eventual
reduction step is deterministic, so guarded reduction does not resolve any nondeterminism.

Consider the set of linear contexts, ranged over by the metavariable L, defined as follows.
Such a context is linear in the sense that the hole in the context, written [ ], is activated at
most once. Guarded reduction is defined in terms of a notion of guarded linear context.

Linear Contexts and Guarded Linear Contexts:

L ::=
[ ]
Lσ

out(M,N);L
in(M,x);L
new a;L
P | L
let x1, . . . ,xn suchthat M = N in L else P
let x1, . . . ,xn suchthat M = N in L else L

Let L be a guarded linear context if every occurrence of [ ] is within an out, in, or let.
Let bv(L) be the set of variables in scope for any occurrences of [ ].

The definition of linear context is tailored to the following lemma; in particular, the two
separate clauses for suchthat arise from the translation of pattern matching. In the context
Lσ , σ is an explicit substitution; its application is deferred until the hole in L is filled with
a process. We write L[P] for the outcome of filling the holes in L with the process P; in
particular, (Lσ)[P] is L[P]σ , that is, the outcome of actually applying the substitution to
L[P].

LEMMA 9. For all e and x, E [[e]](x,L) is a linear context whenever L is.

LEMMA 10. If L is a linear context that is not guarded, there is an evaluation context
E and a substitution σ , such that for all processes Q, L[Q] = E[Qσ ].

Guarded Reduction: P ; Q

new k;(G[out(k,M)] | in(k,x);P) ; G[P{M/x}]
where k /∈ n(G)∪ fn(M,P), and G is a guarded linear context, and fv(P)∩bv(G)⊆ {x}

P ; P′⇒ new a;P ; new a;P′

P ; P′⇒ P | R ; P′ | R
P≡ Q,Q ; Q′,Q′ ≡ P′⇒ P ; P′

The following lemma is an alternative characterization of guarded reduction in terms of
evaluation contexts. Each evaluation context, E, is a linear context, but is not guarded.
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LEMMA 11. P ; P′ if and only if there is an evaluation context E, a guarded linear
context G, a value M, a process Q with fv(Q)∩ bv(G) ⊆ {x}, and a name k /∈ n(G)∪
fn(M,Q), such that

P≡ E[new k;(G[out(k,M)] | in(k,x);Q)] P′ ≡ E[G[Q{M/x}]]

As intended, guarded reduction formalizes the eventual communication of the result x
from an F expression e on its continuation channel k to a continuation process P.

LEMMA 12. If k /∈ n(e,P) then new k;(E [[e]](x,out(k,x)) | in(k,x);P) (→∪;)E [[e]](x,P).

The following lemma makes explicit the decomposition of a reduction that may involve
a guarded context.

LEMMA 13. Let E be an evaluation context, G be a guarded linear context, and P a
process. If E[G[P]]→ Q′, then there exist E ′ evaluation context and L linear context such
that (1) for all processes R, E[G[R]]→ E ′[L[R]]; and (2) Q′ ≡ E ′[L[P]].

The following lemma formalizes the intuition that a guarded reduction anticipates a
subsequent reduction step.

LEMMA 14. If P ;→ P′ then either P→; P′ or P→→ P′.

Proof: By Lemma 11, P ; P◦ → P′ implies that there is an evaluation context E, a
guarded linear context G, a value M, a process Q with fv(Q)∩ bv(G) ⊆ {x}, and a name
k /∈ n(G)∪ fn(M,Q), such that:

P≡ E[new k;(G[out(k,M)] | in(k,x);Q)] P◦ ≡ E[G[Q{M/x}]]

By Lemma 13, we obtain E ′ and L such that E[G[R]]→ E ′[L[R]] for all processes R, and
P′ ≡ E ′[L[Q{M/x}]]. Without loss of generality, we assume that k does not occur in L
or E ′. For R = out(k,M) | in(k,x);Q, we have a reduction:

E[G[out(k,M) | in(k,x);Q]] → E ′[L[out(k,M) | in(k,x);Q]]

By induction on the derivation for this reduction, and since there are no further occurrences
of k in the processes above, we obtain the following reduction from P:

P ≡ E[new k;(G[out(k,M)] | in(k,x);Q)] → E ′[new k;(L[out(k,M)] | in(k,x);Q)]

We distinguish two cases, depending on L:

—If L is guarded, then

P→ E ′[new k;(L[out(k,M)] | in(k,x);Q)] ; E ′[L[Q{M/x}]] ≡ P′

—Otherwise, by Lemma 10, L is of the form E ′′[ σ ] for some substitution σ and we have

P→ E ′[new k;(E ′′[out(k,Mσ)] | in(k,x);Q)] → E ′[E ′′[Q{Mσ/x}]] ≡ P′

(Intuitively, substitutions in L record variables previously bound by a guard of G, such as
received variables bound in input guards.)

Guarded reductions do not affect query satisfaction, as they never introduce events in
evaluation contexts.

LEMMA 15. If P |= q and P ; P′ then P′ |= q.
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Now, the main lemma supporting the safety theorem can be formally stated: a reduction
of a configuration at the F level corresponds to a series of reductions followed by a series
of guarded reductions at the pi calculus level.

LEMMA 16. If C→C′ and as = fn(C′)\ fn(C) then C ′[[C]]→∗≡;∗ new as;C ′[[C′]].

Proof: The proof is by induction on the derivation of C→C′. We consider each rule of
the definition of C→C′, and in each case let as = fn(C′)\ fn(C). By definition of C→C′,
both C and C′ are closed. We show the case for function application, the one case that
requires the use of guarded reduction.

—Case C0 | let x = ` M1 . . . Mn Ŝ→C0 | let x = e{M1/x1, . . . ,Mn/xn} Ŝ
if C0 = C1 | let ` x1 . . .xn = e, with as = ∅.
Let LHS and RHS be the translations of the configurations before and after the reduction.
In the following, we choose k2 to be fresh, and we may choose the intermediate variable
x in E [[e]](x,out(k1,x)) to be the same as the bound variable x in let x = ` M1 . . . Mn. We
make iterated appeals below to the substitution lemma, Lemma 8(1) (as we may assume
the bound variable x is not free in M1, . . . , Mn, and that x 6= xi for each i ∈ 1..n). At the
last step for the LHS, we appeal to Lemma 12.

LHS = C ′[[C1 | let ` x1 . . .xn = e | let x = ` M1 . . . Mn Ŝ]]
= C ′[[C1]] | C ′[[let ` x1 . . .xn = e]] | C ′[[let x = ` M1 . . . Mn Ŝ]]
= C ′[[C1]] |S [[let ` x1 . . .xn = e]](0) |S [[let x = ` M1 . . . Mn Ŝ]](0)
= C ′[[C1]] | !in(`,(x1, . . . ,xn,k1));E [[e]](x,out(k1,x)) | 0

| E [[` M1 . . . Mn]](x,S [[Ŝ]](0))
≡ C ′[[C0]] | in(`,(x1, . . . ,xn,k1));E [[e]](x,out(k1,x)) |

new k2;(out(`,(M1, . . . ,Mn,k2)) | in(k2,x);S [[Ŝ]](0))
≡ C ′[[C0]] | new k2;(in(`,(x1, . . . ,xn,k1));E [[e]](x,out(k1,x)) |

out(`,(M1, . . . ,Mn,k2)) | in(k2,x);S [[Ŝ]](0))
→ C ′[[C0]] | new k2;(E [[e]](x,out(k1,x)){M1/x1, . . . ,Mn/xn,k2/k1} |

in(k2,x);S [[Ŝ]](0))
= C ′[[C0]] | new k2;(E [[e{M1/x1, . . . ,Mn/xn}]](x,out(k2,x)) |

in(k2,x);S [[Ŝ]](0))
→∪; C ′[[C0]] | E [[e{M1/x1, . . . ,Mn/xn}]](x,S [[Ŝ]](0))

RHS = C ′[[C0 | let x = e{M1/x1, . . . ,Mn/xn} Ŝ]]
= C ′[[C0]] | C ′[[let x = e{M1/x1, . . . ,Mn/xn} Ŝ]]
= C ′[[C0]] |S [[let x = e{M1/x1, . . . ,Mn/xn} Ŝ]](0)
= C ′[[C0]] |S [[let x = e{M1/x1, . . . ,Mn/xn}]](S [[Ŝ]](0))
= C ′[[C0]] | E [[e{M1/x1, . . . ,Mn/xn}]](x,S [[Ŝ]](0))

LEMMA 17 REDUCTION CORRESPONDENCE. If C→C′ then C [[C]]→∗≡;∗ C [[C′]].

Proof: Assume C→C′. Let as1 = fn(C), as2 = fn(C′), and as = as2 \as1. By Lemma 16,

C ′[[C]]→∗≡;∗ new as;C ′[[C′]]

By definition, the relations ≡, ;, and → are closed under restriction, hence so too is
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→∗≡;∗. Hence, we add as1 to both sides to obtain:

new as1;C ′[[C]]→∗≡;∗ new as1;new as;C ′[[C′]]

By definition,→∗≡;∗ is closed on the right by ≡, so we get:

new as1;C ′[[C]]→∗≡;∗ new as2;C ′[[C′]]

Hence, by definition of C [[C]] and C ′[[C′]], we have C [[C]]→∗≡;∗ C [[C′]].

Finally, the following lemmas lead to our main result.

LEMMA 18 EVENT CORRESPONDENCE. If C ′[[C]] ≡ event M | P then C ≡ event M |
C′ for some C′.

Proof: The proof is by induction on the structure of C. In the case for C = Ŝ and C ′[[C]] =
S [[Ŝ]](0), the proof relies on the fact that there are no N and P such that S [[Ŝ]](0) ≡
event N | P. To achieve this property, we must take care that event M is not prema-
turely activated in the definition of the process E [[log M]](x,Q). We ensure this by taking
E [[log M]](x,Q) to be record M;Q{()/x}; the definition of the record abbreviation guards
the activation of event M by a τ-step.

LEMMA 19 QUERY CORRESPONDENCE. If C [[C]] |= q then C |= q.

Proof: Let q = ev:E⇒ ev:B1∨·· ·∨ev:Bn. To prove C |= q, suppose that C≡ event Eσ |
C′. We are to show that C′ ≡ event Biσ |C′′ for some i ∈ 1..n and C′′. By Lemma 7, we
have:

C [[C]] ≡ C [[event Eσ |C′]]
= new as;C ′[[event Eσ |C′]]
= new as;(C ′[[event Eσ ]] | C ′[[C′]])
= new as;(event Eσ | C ′[[C′]])

where as = fn(Eσ ,C ′[[C′]]). Given that C [[C]] |= q, we have C ′[[C′]] ≡ event Biσ | P′′ for
some i ∈ 1..n. By Lemma 18, C′ ≡ event Biσ |C′′ for some i ∈ 1..n and C′′.

LEMMA 20 REFLECTION OF SAFETY. If C [[Ŝ]] is safe for q then Ŝ is safe for q.

Proof: Suppose that Ŝ →∗≡ C. We are to show C |= q. By Lemma 17 and induction
on the reductions in F, we have C [[Ŝ]](→∗≡;∗)∗C [[C]]. By Lemma 14, C [[Ŝ]]→∗≡ P and
P ;∗ C [[C]] for some process P. Since C [[Ŝ]] is safe for q, and C [[Ŝ]]→∗≡ P, we have P |= q.
By Lemma 15, this and P ;∗ C [[C]] imply C [[C]] |= q. By Lemma 19, C |= q.

Throughout this section we are assuming S :: Ipub, with the reduction relation implicitly
depending on the ambient declarations ∆s[[S :: Ipub]].

We now deal with robust safety, relating opponent top-level programs in F and opponent
parallel-contexts in the pi calculus.

LEMMA 21. Let O be an Ipub-opponent. Let `s be the functions declared in S. For some
evaluation context EO such that EO[0] is a ∆s[[S :: Ipub]]-opponent, we have:

new `s;S [[S O]](0)≈ EO[P[[S :: Ipub]]]

Proof: Since O is an Ipub-opponent, a function ` ∈ `s may occur in O only when ` ∈
dom(Ipub), and a variable x may occur free in O only when x ∈ dom(Ipub). By definition of
the translation, the same property holds for S [[O]](0).
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Let publish be a fresh name and let `′s be fresh distinct names in bijection with the
names `s∩dom(Ipub), that is, the names of the published functions. We write ∏`′∈`′s `

′→ `
for the parallel composition consisting of a forwarder `′ → ` for each `′ ∈ `′s, where ` ∈
`s∩dom(Ipub) is the name in bijection with `′. In the definition of P[[S :: Ipub]], the tuple
xs carries `′s plus each variable x ∈ dom(Ipub).

We calculate the desired equation as follows:

new `s;S [[S O]](0)
= new `s;S [[S]](S [[O]](0))
≈ new `′s, `s;(∏`′∈`′s `

′→ ` |S [[S]](S [[O]](0){`′s/`s})) (1)

≈
new publish;(!in(publish,xs);S [[O]](0){`′s/`s}
| new `′s, `s;(∏`′∈`′s `

′→ ` |S [[S]](out(publish,xs))))
(2)

= new publish;(!in(publish,xs);S [[O]](0){`′s/`s} |P[[S :: Ipub]]) (3)

The observational equivalence (1) is obtained by applying Lemma 5 to introduce a for-
warder `′ → ` for every name in `s. We need that the process S [[S]](S [[O]](0)){`′s/`s}
uses each name `′ ∈ `′s only for sending asynchronous messages, which follows by check-
ing that the process S [[S]](S [[O]](0)) uses each name `∈ `s only for sending asynchronous
messages.

The observational equivalence (2) is an instance of Lemma 6; we rely on the hypothesis
that all the names and variables bound in the context new `′s, `s;(∏`′∈`′s `

′→ ` |S [[S]]([ ]))
that occur in S [[O]](0){`′s/`s} are included in xs.

The final step (3) uses the definition of the top-level translation. To conclude, we let

E0 = new publish;(!in(publish,xs);S [[O]](0){`′s/`s} | [ ])

and check that E0[0] is a ∆s[[S :: Ipub]]-opponent.

Proof of Theorem 1 If S :: Ipub and [[S :: Ipub]] is robustly safe for q, then S is robustly
safe for q and Ipub.

Proof: Recall that S :: Ipub means that Prim ` S : I where I = Ipub, Ipriv for some Ipriv and
that [[S :: Ipub]] is the script defining the process P[[S :: Ipub]] with the ambient declarations
∆s[[S :: Ipub]] we have assumed throughout this section.

Suppose Prim\log, Ipub `O : IO. Without loss of generality, we assume that IO mentions
just one constructor declaration, Box:ctor 2. We are to show that S O is safe for q.

By Lemma 21, we have new `s;S [[S O]](0) ≈ EO[P[[S :: Ipub]]] where `s is the set of
functions declared in S and E0 is an evaluation context such that E0[0] is a ∆s[[S :: Ipub]]-
opponent. By assumption, [[S :: Ipub]] is robustly safe for q. By Lemma 4, EO[P[[S :: Ipub]]]
is safe for q. By definition of ≈, new `s;S [[S O]](0) is also safe for q. By definition,
C [[S O]] = new as;S [[S O]](0) where as = fn(S O). Each name in `s occurs free in
S [[S O]](0), so `s⊆ as. Since new `s;S [[S O]](0) is safe for q, Lemma 3 implies C [[S O]]
is safe for q. By Lemma 20, S O is safe for q.

Assuming that fs2pv computes a script that consists of declarations ∆s[[Ipub, Ipriv]] and
process P[[S : Ipub]], and that ProVerif correctly decides whether a process is robustly safe
for a query, Theorem 1 justifies relying on the fs2pv-ProVerif tool chain to determine robust
safety of S.
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