
Verified Interoperable Implementations of Security Protocols

Karthikeyan Bhargavan∗ Cédric Fournet∗ Andrew D. Gordon∗ Stephen Tse†

∗Microsoft Research †University of Pennsylvania

Abstract

We present an architecture and tools for verifying im-
plementations of security protocols. Our implementations
can run with both concrete and symbolic implementations
of cryptographic algorithms. The concrete implementation
is for production and interoperability testing. The symbolic
implementation is for debugging and formal verification.
We develop our approach for protocols written in F#, a di-
alect of ML, and verify them by compilation to ProVerif,
a resolution-based theorem prover for cryptographic pro-
tocols. We establish the correctness of this compilation
scheme, and we illustrate our approach with protocols for
Web Services security.

1. Introduction

The design and implementation of code involving cryp-
tography remains dangerously difficult. The problem is to
verify that an active attacker, possibly with access to some
cryptographic keys but unable to guess other secrets, can-
not thwart security goals such as authentication and se-
crecy [33]; it has motivated a serious research effort on
the formal analysis of cryptographic protocols, starting with
Dolev and Yao [16] and eventually leading to effective ver-
ification tools. Hence, it is now feasible to verify abstract
models of protocols against demanding threat models.

Still, as with many formal methods, a gap remains be-
tween protocol models and their implementations. Distill-
ing a cryptographic model is delicate and time consum-
ing, so that verified protocols tend to be short and to ab-
stract many potentially troublesome details of implementa-
tion code. At best, the model and its implementation are re-
lated during tedious manual code reviews. Even if, at some
point, the model faithfully covers the details of the protocol,
it is hard to keep it synchronized with code as it is deployed
and used. Hence, despite verification of the abstract model,
security flaws may appear in its implementation.

Our thesis is that to verify production code of security
protocols against realistic threat models is an achievable re-

search goal. The present paper advances in this direction
by contributing a new approach to deriving automatically
verifiable models from code. We demonstrate its applica-
tion, if not to production code, at least to code constituting
a working reference implementation—one suitable for in-
teroperability testing with efficient production systems but
itself optimized for clarity not performance.

Our prototype tools analyze cryptographic protocols
written in F# [39], a dialect of ML. F# is a good fit for our
purposes: it has a simple formal semantics; its datatypes of-
fer a convenient way of programming operations on XML,
important for our motivating application area, web services
security. Semantically, F# is not so far from languages like
Java or C#, and we expect our techniques could be adapted
to such languages. We run F# programs on the Common
Language Runtime (CLR), and rely on the .NET Frame-
work libraries for networking and cryptographic functions.

The diagram above describes our new language-based
approach, which derives verifiable models from executable
code. We prefer not to tackle the converse problem, turning
a formal model into code, as, though feasible, it amounts
to language design and implementation, which generally is
harder and takes more engineering effort than model extrac-
tion from an existing language. Besides, modern program-
ming environments provide better tool support for writing
code than for writing models.

We strive to share most of the code, syntactically and se-
mantically, between the implementation and its model. Our
approach is modular, as illustrated by the diagram: we write
application code defining protocols against restrictive typed
interfaces defining the services exposed by the underlying

To appear in the proceedings of the19th IEEE Computer Security Foundations Work-
shop (CSFW 2006), July 5–7, 2006, Venice, Italy.c© IEEE 2006.

cryptographic, networking, and other libraries. Further, we
write distinct versions of library code only for a few core in-
terfaces, such as those featuring cryptographic algorithms.
For example, cryptographic operations are on an abstract
typebytes. We provide dualconcreteandsymbolicimple-
mentations of each operation. For instance, the concrete
implementation ofbytesis simply as byte arrays, subject
to actual cryptographic transforms provided by the .NET
Framework. On the other hand, the symbolic implemen-
tation definesbytesas algebraic expressions subject to ab-
stract rewriting in the style of Dolev and Yao, and assumed
to be a safe abstraction of the concrete implementation.

We formalize the active attacker as an arbitrary program
in our source language, able to call interfaces defined by the
application code and also the libraries for cryptography and
networking. Our verification goals are to show secrecy and
authentication properties in the face of all such attackers.
Accordingly, we can adapt our threat model by designing
suitable interfaces for the benefit of the attacker. The appli-
cation code implements functions for each role in the pro-
tocol, so the attacker can create multiple instances of, say,
initiators and responders, as well as monitor and send net-
work traffic and, in some models, create new principals and
compromise some of their credentials.

Given dual implementations for some libraries, we can
compile and execute programs both concretely and symbol-
ically. This supports the following tasks:

(1) To obtain areference implementation, we execute ap-
plication code against concrete libraries. We use the
reference implementation for interoperability testing
with some other available, black-box implementation.
Experimental testing is essential to confirm that the
protocol code is functionally correct, and complete for
at least a few basic scenarios. (Otherwise, it is surpris-
ingly easy to end up with a model that does not support
some problematic features.)

(2) To obtain asymbolic prototype, we execute the same
application code against symbolic libraries. This al-
lows basic testing and debugging, especially for the
expected message formats. Though this guarantees
neither wire format interoperability nor any security
properties, it is pragmatically useful during the initial
stages of code development.

(3) To performformal verification, we run our model ex-
traction tool, called fs2pv, to derive a detailed for-
mal model from the application code and symbolic
libraries. Our models are in a variant of the pi cal-
culus [30, 1] accepted by ProVerif [13, 12]. ProVerif
compiles our models to logical clauses and runs a res-
olution semi-algorithm to prove properties automati-
cally. In case a security property fails, ProVerif can
often construct an explicit attack [4].

The fs2pv/ProVerif tool chain is applicable in principle
to a broad range of cryptographic protocols, but our moti-
vating examples are those based on the WS-Security [32]
standard for securing SOAP [23] messages sent to and from
XML web services. WS-Security prescribes how to sign
and encrypt parts of SOAP messages. WSE [28] is an
implementation of security protocols based on WS-Secu-
rity. Previous analyses of pi calculus models extracted from
WSE by hand have uncovered attacks [9, 10], but there has
been no previous attempt to check conformance between
these models and code automatically. To test the viability of
our new approach, we have developed a series of reference
implementations of simple web services protocols. They
are both tested to be interoperable with WSE and verified
via our tool chain. The research challenge in developing
these implementations is to confront at once the difficulty
of processing standard wire formats, such as WS-Security,
and the difficulty of extracting verifiable models from code.

Our model extraction tool, fs2pv, accepts an expressive
first-order subset of F# we dub F, with primitives for com-
munications and concurrency. It has a simple formal se-
mantics facilitating model extraction, but disallows higher-
order functions and some imperative features. The applica-
tion code and the symbolic libraries must be within F, but
the concrete libraries are in unrestricted F#, with calls to
the platform libraries. Formally, we define the attacker to
be an arbitrary F program well formed with respect to a re-
strictive attacker interfaceimplemented by the application
code. The attacker can only interact with the application
code via this interface, which is supplied explicitly to the
model extraction tool along with the application code. Al-
though we compile to the pi calculus for verification, the
properties proved can be understood independently of the pi
calculus. We prove theorems to justify that verification with
ProVerif implies properties of source programs defined in
terms of F. The principal difficulty in the proofs arises from
relating the attacker models at the two levels.

Since security properties within the Dolev-Yao model
are undecidable, and we rely on an automatic verifier, there
is correct code within F that fails to verify. A cost of our
method, then, is that we must adopt a programming disci-
pline within F suitable for automatic verification. For ex-
ample, we avoid certain uses of recursion. The initial per-
formance results for our prototype tools are encouraging, as
much of the performance is determined by the concrete li-
braries; nonetheless, there is a tension between efficiency
of execution and feasibility of verification. To aid the latter,
fs2pv chooses between a range of potential semantics for
each F function definition (based on abstractions, rewrite
rules, relations, and processes).

Our method relies on explicit interfaces describing low-
level cryptographic and communication libraries, and on
some embedded specifications describing the intended se-

2

curity properties. Model extraction directly analyzes ap-
plication code using these interfaces plus the code of the
symbolic libraries, while ignoring the code of the concrete
libraries. Hence, our method can discover bugs in the appli-
cation code, but not in the trusted concrete libraries.

At present, we have assessed our method only on new
code written by ourselves in this style. Many existing pro-
tocol implementations rely on well defined interfaces pro-
viding cryptographic and other services, so we expect our
method will adapt to existing code bases, but this remains
future work.

In general, the derivation of security models from code
amounts to translating the security-critical parts of the code
and safely abstracting the rest. Given an arbitrary program,
this task can hardly be automated—some help from the pro-
grammer is needed, at least to assert the intended security
properties. Further work may discover how to compute safe
abstractions directly from the code of concrete libraries. For
now, we claim the benefit of symbolic verification of a refer-
ence implementation is worth the cost of adding some secu-
rity assertions in application code and adopting a program-
ming discipline compatible with verification.

In summary, our main contributions are as follows:

(1) An architecture and language semantics to support ex-
traction of verifiable formal models from implementa-
tion code of security protocols.

(2) A prototype model extractor fs2pv that translates from
F to ProVerif. This tool is one of the first to extract
verifiable models from working protocol implementa-
tions. Moreover, to the best of our knowledge, it is
the first to extract models from code that uses a stan-
dard message format (WS-Security) and hence inter-
operates with other implementations (WSE).

(3) Theorems justifying model extraction: low-level prop-
erties proved by ProVerif of a model extracted by fs2pv
imply high-level properties expressed in terms of F.

(4) Reference implementations of some typical web ser-
vices security protocols and mechanisms, both for-
mally verified and tested for interoperability. Our
implementation is modular, so that most code is ex-
pressed in reusable libraries that give a formal seman-
tics to informal web services security specifications.

Section2 informally introduces many ideas of the paper
in the context of a simple message authentication protocol.
Section3 defines our source language, F, as a subset of F#,
and formalizes our desired security properties. Section4
outlines our techniques for model extraction, and states our
main theorems. Section5 summarizes our experience in
writing and verifying code for web services security proto-
cols. Section6 concludes.

A companion report [11] provides additional technical
details, including definitions for the source (F) and target (pi
calculus) languages, the formal translation, and all proofs.

2. A Simple Message Authentication Protocol

We illustrate our method on a very simple, ad hoc proto-
col example. Section5 discusses more involved examples.

The protocol Our example protocol has two roles, a client
that sends a message, and a server that receives it. For the
sake of simplicity, we assume that there is only one princi-
pal A acting as a client, and only one principalB acting as
a server. (Further examples support arbitrarily many princi-
pals in each role.)

Our goal here is that the server authenticate the mes-
sage, even in the presence of an active attacker. To this end,
we rely on a password-based message authentication code
(MAC). The protocol consists of a single message:

A→ B : HMACSHA1{nonce}[pwdA | text] |
RSAEncrypt{pkB}[nonce] | text

The client acting for principalA sends a single messagetext
to the server acting forB. The client and server shareA’s
passwordpwdA, and the client knowsB’s public keypkB.
To authenticate the messagetext, the client uses the one-
way keyed hash algorithm HMAC-SHA1 to bind the mes-
sage withpwdA and a freshly generated valuenonce. Since
the password is likely to be a weak secret, that is, a secret
with low entropy, it may be vulnerable to offline dictionary
attacks if the MAC, the messagetext, and the nonce are all
known. To protect the password from such guessing attacks,
the client encrypts the nonce withpkB.

Application code Given interfacesCrypto, Net, andPrins
defining cryptographic primitives, communication opera-
tions, and access to a database of principal identities, our
verifiable application code is a module that implements the
following typed interface.

pkB: rsakey
client: str→unit
server: unit→unit

The valuepkB is the public encryption key for the server.
Calling client with a string parameter should send a single
message to the server, while callingservercreates an in-
stance of the server role that awaits a single message.

In F#,str→unit is the type of functions from the typestr,
which is an abstract type of strings defined by theCrypto
interface, to the empty tuple typeunit. TheCryptointerface
also provides the abstract typersakeyof RSA keys.

The exported functionsclient andserverrely on the fol-
lowing functions to manipulate messages.

3

let macnoncepasswordtext=
Crypto.hmacsha1nonce

(concat(utf8 password) (utf8 text))

let maketextpk password=
let nonce= mkNonce() in
(macnoncepasswordtext,
Crypto.rsaencryptpk nonce, text)

let verify (m,en,text) skpassword=
let nonce= Crypto.rsadecryptsk en in
if not (m = macnoncepasswordtext)
then failwith "bad MAC"

The first function,mac, takes three arguments—anonce,
a sharedpassword, and the messagetext—and computes
their joint cryptographic hash using some implementation
of the HMAC-SHA1 algorithm provided by the crypto-
graphic library. As usual in dialects of ML, types may be
left implicit in code, but they are nonetheless verified by
the compiler;machas typebytes→str→str→bytes. The
functionsconcatandutf8 provided byCryptoperform con-
catenation of byte arrays and an encoding of strings into
byte arrays.

The two other functions define message processing, for
senders and receivers, respectively. Functionmakecreates
a message: it generates a freshnonce, computes the MAC,
and also encrypts thenonceunder the public keypk of the
intended receiver, using thersaencryptalgorithm. The re-
sulting message is a triple comprising the MAC, the en-
crypted nonce, and the text. Functionverify performs the
converse steps: it decrypts the nonce using the private key
skd, recomputes the MAC and, if the resulting value dif-
fers from the received MAC, throws an exception (using the
failwith primitive).

Although fairly high-level, our code includes enough de-
tails to be executable, such as the details of particular algo-
rithms, and the necessaryutf8 conversions from strings (for
passwordandtext) to byte arrays.

In the following code defining protocol roles, we rely
on events to express intended security properties. Events
roughly correspond to assertions used for debugging pur-
poses, and they have no effect on the program execution.
Here, we define two kinds of events,Send(text) to mark the
intent to send a message with contenttext, andAccept(text)
to mark the acceptance oftext as genuine. Accordingly,
clientuses a primitive functionlog to log an event of the first
kind before sending the message, andserverlogs an event
of the second kind after verifying the message. Hence, if
our protocol is correct, we expect everyAccept(text) event
to be preceded by a matchingSend(text) event. Such a cor-
respondence between events is a common way of specifying
authentication.

The client code relies on the network address of the
server, the shared password, and the server’s public key:

let address= S "http://server.com/pwdmac"
let pwdA = Prins.getPassword(S "A")
let pkB = Prins.getPublicKey(S "B")

type Ev = Sendof str | Acceptof str

let client text=
log(Send(text));
Net.sendaddress(marshall(maketextpkB pwdA))

Here, the functiongetPasswordretrievesA’s password from
the password database, andgetPublicKeyextractsB’s pub-
lic key from the local X.509 certificate database. The func-
tionSis defined byCrypto; the expressionS "A" , for exam-
ple, is an abstract string representing the literal"A" . The
function client then runs the protocol for sendingtext; it
builds the message, then usesNet.send, a networking func-
tion that posts the message as an HTTP request toaddress.

Symmetrically, the functionserverattempts to receive
a single message by accepting a message and verifying its
content, usingB’s private key for decryption.

let skB = Prins.getPrivateKey(S "B")
let server() =

let m,en,text= unmarshall(Net.acceptaddress) in
verify (m,en,text) skB pwdA; log(Accept(text))

The functionsmarshall and unmarshallserialize and
deserialize the message triple—the MAC, the encrypted
nonce, and the text—as a string, used here as a simple wire
format. (We present an example of the resulting message
below.) These functions are also part of the verified appli-
cation code; we omit their details.

Concrete and symbolic libraries The application code
listed above makes use of aCryptolibrary for cryptographic
operations, aNet library for network operations, and aPrins
library offering access to a principal database. The concrete
implementations of these libraries are F# modules contain-
ing functions that are wrappers around the corresponding
platform (.NET) cryptographic and network operations.

To obtain a complete symbolic model of the program, we
also develop symbolic implementations of these libraries as
F# modules with the same interfaces. These symbolic li-
braries are within the restricted subset F we define in the
next section, and rely on a small modulePi defining name
creation, channel-based communication, and concurrency
in the style of the pi calculus. FunctionsPi.sendandPi.recv
allow message passing on channels, functionsPi.nameand
Pi.changenerate fresh names and channels, and a function
Pi.fork runs its function argument in parallel. The members
of Pi are primitive in the semantics of F. ThePi module is
called from the symbolic libraries during symbolic evalu-
ation and formal verification; it is not called directly from
application code and plays no part in the concrete imple-
mentation.

4

moduleCrypto// concrete code in F#
openSystem.Security.Cryptography
type bytes= byte[]
type rsakey= RSAof RSAParameters
...
let rng= newRNGCryptoServiceProvider()
let mkNonce() =

let x = Bytearray.make16 in
rng.GetBytesx; x

...
let hmacsha1k x =

newHMACSHA1(k).ComputeHashx
...
let rsa= newRSACryptoServiceProvider()
let rsakeygen() = ...
let rsapub(RSAr) = ...
let rsaencrypt(RSAr) (v:bytes) = ...
let rsadecrypt(RSAr) (v:bytes) =

rsa.ImportParameters(r);
rsa.Decrypt(v,false)

moduleCrypto// symbolic code in F
type bytes=
| Nameof Pi.name
| HmacSha1of bytes∗ bytes
| RsaKeyof rsakey
| RsaEncryptof rsakey∗ bytes
...

and rsakey= PK of bytes| SK of bytes
...
let freshbyteslabel= Name(Pi.namelabel)
let mkNonce() = freshbytes"nonce"
...
let hmacsha1k x = HmacSha1(k,x)
...
let rsakeygen() = SK (freshbytes"rsa")
let rsapub(SK(s)) = PK(s)
let rsaencrypts t = RsaEncrypt(s,t)
let rsadecrypt(SK(s)) e= match ewith
| RsaEncrypt(pke,t) whenpke= PK(s) → t
| → failwith "rsa_decrypt failed"

The listings above show the two implementations of
the Crypto interface. The concrete implementation de-
fines bytes as primitive arrays of bytes, and essentially
forwards all calls to standard cryptographic libraries of
the .NET platform. In contrast, the symbolic implemen-
tation definesbytes as an algebraic datatype, with sym-
bolic constructors and pattern matching for representing
cryptographic primitives. This internal representation is
accessible only in this library implementation. For in-
stance,hmacsha1is implemented as a function that builds
an HmacSha1(k,x) term; since no inverse function is pro-
vided, this abstractly defines a perfect, collision-free one-
way function. More interestingly, RSA public key encryp-
tions are represented byRsaEncryptterms, decomposed
only by a functionrsadecryptthat can verify that the valid
decryption key is provided along with the encrypted term.

Similarly, the concrete implementation ofNet contains
functions, such assendandaccept, that call into the plat-
form’s HTTP library (System.Net.WebRequest), whereas
the symbolic implementation of these functions simply en-
queues and dequeues messages from a shared buffer imple-
mented with thePi module as a channel. We outline the
symbolic implementation ofNetbelow.

moduleNet // symbolic code in F
...
let httpchan= Pi.chan()
let sendaddressmsg=

Pi.sendhttpchan(address,msg)
let acceptaddress=

let (addr,msg) = Pi.recvhttpchanin
if addr= addressthen msgelse...

The function send adds a message to the channel
httpchanand the functionacceptremoves a message from
the channel.

In this introductory example, we have a fixed popula-
tion of two principals, so the values forA’s password and
B’s key pair can simply be retrieved from the third interface
Prins: the concrete implementation ofPrinsbinds them to
constants; its symbolic implementation binds them to fixed
names generated by callingPi.name. In general, a concrete
implementation would retrieve keys from the operating sys-
tem key store, or prompt the user for a password. The sym-
bolic version implements a database of passwords and keys
using a channel kept hidden from the attacker.

Next, we describe how to build both a concrete reference
implementation and a symbolic prototype, in the sense of
Section1.

Concrete execution To test that the protocol runs cor-
rectly, we run the F# compiler on the F application code,
the concrete F# implementations ofCrypto, Net, andPrins,
together with the following top-level F# code to obtain a
single executable, sayrun. Depending on its command line
argument, this executable runs in client or server mode:

do match Sys.argv.(1) with
| "client" →client (S Sys.argv.(2))
| "server" →server()
| →printf "Usage: run client txt\n" ;

printf " or: run server\n"

The library function callSys.argv.(n) returns thenth ar-
gument on the command line. As an example, we can exe-

5

cute the commandrunclientHi on some machine, execute
runserveron some other machine that listens onaddress,
and observe the protocol run to completion. This run of the
protocol involves our concrete implementation of (HTTP-
based) communications sending and receiving the encoded
string “FADCIzZhW3XmgUABgRJj1KjnWy...”.

Symbolic execution To experiment with the protocol
code symbolically, we run the F# compiler on the F applica-
tion code, the symbolic F implementations ofCrypto, Net,
and Prins, and the F# implementation of thePi interface,
together with the following top-level F code, that conve-
niently runs instances of the client and of the server within
a single executable.

do Pi.fork (fun()→ client (S "Hi"))
do server()

The communicated message prints as follows

HMACSHA1{nonce3}[pwd1| ’Hi’] |
RSAEncrypt{PK(rsasecret2)}[nonce3] | ’Hi’

where pwd1, rsasecret2, and nonce3are the symbolic
names freshly generated by thePi module. This message
trace reveals the structure of the abstract byte arrays in the
communicated message, and hence is more useful for de-
bugging than the concrete message trace. We have found it
useful to test application code by symbolic execution (and
even symbolic debugging) before testing them concretely
on a network.

Modelling the opponent We introduce our language-
based threat model for protocols developed in F. (Section3
describes the formal details.)

Let S be the F program that consists of the application
code plus the symbolic libraries. The programS, which
largely consists of code shared with the concrete implemen-
tation, constitutes our formal model of the protocol.

Let O be any F program that is well formed with respect
to the interface exported by the application code (in this
case, the valuepkB and the functionsclientandserver), plus
the interfacesCrypto andNet. By well formed, we mean
thatO only uses external values and calls external functions
explicitly listed in these interfaces. Moreover,O can call
all the operations in thePi interface, as these are primitives
available to all F programs. We take the programO to repre-
sent a potential attacker on the formal modelSof the proto-
col, a counterpart to an active attacker on a concrete imple-
mentation. (Treating an attacker as an arbitrary F program
develops the idea of an attacker being an arbitrary parallel
process, as in the spi calculus [2].)

Giving O access to theCrypto and Net interfaces, but
not Prins, corresponds to the Dolev-Yao [16] model of
an attacker able to perform symbolic cryptography, and

monitor and send network traffic, but unable to access
principals’ credentials directly. In particular,Net.send
enables the attacker to send any message to the server
while Net.acceptenables the attacker to intercept any mes-
sage sent to the server. The functionsCrypto.rsaencrypt
and Crypto.rsadecrypt enable encryption and decryption
with keys known to the attacker;Crypto.rsakeygenand
Crypto.mkNonceenable the generation of fresh keys and
nonces;Crypto.hmacsha1enables MAC computation.

Giving O access toclient andserverallows it to create
arbitrarily many instances of protocol roles, while access to
pkB letsO encrypt messages for the server. (We can enrich
the interface to give the opponent access to the secret cre-
dentials of some principals, and to allow the generation of
arbitrarily many principal identities.) SincepwdA, skB, and
log are not included in the attacker interface, the attacker
has no direct access to the protocol secrets and cannot log
events directly.

Formal verification aims to establish secrecy and authen-
tication properties for all programsS Oassembled from the
given systemSand any attacker programO.

In particular, the message authentication property of our
example protocol is expressed as correspondences [40] be-
tween events logged by code withinS. For all O, we want
that in every run ofS O, everyAcceptevent is preceded by
a correspondingSendevent. In our syntax (based on that of
ProVerif), we express this correspondence assertion as:

ev:Accept(x) ⇒ ev:Send(x)

Formal verification We can check correspondences at
runtime during any particular symbolic run of the program;
the more ambitious goal of formal verification is to prove
them for all possible runs and attackers. To do so, we run
our model extractor fs2pv on the F application code, the
symbolic F implementations ofCrypto, Net, andPrins, and
the attacker interface as described above. The result is a
pi calculus script with embedded correspondence assertions
suitable for verification with ProVerif. In the simplest case,
F functions compile to pi calculus processes, while the at-
tacker interface determines which names are published to
the pi calculus attacker. For our protocol, ProVerif immedi-
ately succeeds.

Conversely, consider for instance a variant of the pro-
tocol where the MAC computation does not actually de-
pend on the text of the message—essentially transforming
the MAC into a session cookie:

let macnoncepasswordtext= hmacsha1nonce
(concat(utf8 password) (utf8 (S "cookie")))

For the resulting script, ProVerif automatically finds and
reports an active attack, whereby the attacker intercepts the
client message and substitutes any text for the client’s text
in the message. Experimentally, we can confirm the attack

6

found in the analysis, by writing in F an instance of the
attacker programO that exploits our interface. Here, the
attack may be written:

do fork(fun()→ client (S "Hi"));
let (nonce, mac,) = unmarshall(Net.acceptaddress) in
fork(fun()→ server());
Net.sendaddress(marshall(nonce, mac, S "Foo"))

This code first starts an instance of the client, inter-
cepts its message, starts an instance of the server, and for-
wards an amended message to it. Experimentally, we ob-
serve that the attack succeeds, both concretely and symbol-
ically. At the end of those runs, two eventsSend"Hi" and
Accept"Foo" have been emitted, and our authentication
query fails. Once the attack is identified and the protocol
corrected, this attacker code may be added to the test suite
for the protocol.

In addition to authentication, we verify secrecy proper-
ties for our example protocol. Via ProVerif [13], we can
query whether a protocol allows an attacker to guess a weak
secret and then verify the guess—if so, the attacker can
mount an offline guessing attack. In the case of our pro-
tocol, ProVerif shows the password is protected against of-
fline guessing attacks. Conversely, if we consider a variant
of the protocol that passes the nonce in the clear, we find an
attack that can also be written as a concrete F program.

3. Formalizing a Subset of F#

This section defines the untyped subset F of F# in which
we write application code and symbolic libraries. We define
the syntax, sketch the fairly standard semantics, and define
security properties. Some details are left to the technical
report [11].

The language F consists of: a first-order functional core;
algebraic datatypes with pattern-matching (such as the type
bytesin the symbolic implementation ofCrypto); a few con-
currency primitives in the style of the pi calculus; and a
simple type-free module system with which we formalize
the attacker model introduced in the previous section. (Al-
though we do not rely on type safety in the formal defini-
tion, F programs can be typechecked by the F# compiler.)

In the syntax below,̀ ranges over functions (such as
freshBytesor hmacsha1in Crypto) and f ranges over
datatype constructors (such asNameor Hmacsha1in the
type bytes in Crypto). Functions and constructors are
either primitive, or introduced by function or datatype
declarations. The primitives include the communica-
tion and concurrency functionsPi.send, Pi.recv, Pi.name,
Pi.fork described in the previous section. In F, we treat
Pi.chan as a synonym forPi.name; they have different
types but both create fresh atomic names. We omit the
“Pi.” prefix for brevity. Tuple ((e1, . . . ,en)), conditional

(if e then e1 elsee2), equality (e1 = e2), sequencing (e1;e2),
and other expressions can be derived within this core syn-
tax.

Syntax of F:

x,y,z variable
a,b name
f constructor (uncurried)
` function (curried)
true, false, tuplen n≥ 0 primitive constructors
name,send, recv, log, failwith primitive functions
M,N ::= value

x variable
a name
f (M1, . . . ,Mn) constructor application

e ::= expression
M value
` M1 . . . Mn function application
fork(fun()→e) fork a parallel thread
match M with(| Mi → ei)i∈1..n pattern match
let x = e1 in e2 sequential evaluation

d ::= declaration
type s= (| fi of si1∗. . .∗simi)

i∈1..n datatype declaration
let x = e value declaration
let ` x1 . . .xn = e n> 0 function declaration

S::= d1 · · ·dn system: list of declarations

A systemS is a sequence of declarations. We write the
list S as∅ when it is empty. A datatype declaration intro-
duces a new type and its constructors (much like aunion
type with tags in C); the type expressionss, si j are ignored
in F. A value declarationlet x = e triggers the evaluation of
expressione and binds the result tox. A function declara-
tion let ` x1 . . .xn = edefines functioǹ with formal param-
etersx1 . . .xn and function bodye. These functions may be
recursive.

A valueM is a variable, a name, or a constructor appli-
cation. A name is only introduced during evaluation by the
primitive nameto model the generation of channels, keys,
and nonces; source programs contain no free names. Ex-
pressions denote potentially concurrent computations that
return values. Primitive functions mostly represent commu-
nication and concurrency:name() returns a freshly gener-
ated name;sendM N sendsN on the channelM; recv M
returns the next value received on channelM; log M logs
the eventM; failwith M represents a thrown exception; and
fork(fun()→e) evaluatese in parallel. (We need not model
exception handling in F as we rely on exceptions only to
represent fatal errors.) If̀has a declaration, the application
` M1 . . . Mn invokes the body of the declaration with actual
parametersM1, . . . , Mn. A match M with(| Mi → ei)i∈1..n

runs ei for the leasti such that patternMi matches the
valueM; if the patternMi contains variables, they are bound

7

in ei by matching withM. If there are two or more occur-
rences of a variable in a pattern, matching must bind each to
the same value. (Strictly speaking, F# forbids patterns with
multiple occurrences of the same variable. Still, the effect
of any such pattern in F can be had in F# by renaming all
but one of the occurrences and adding one or more equality
constraints via awhenclause.) Finally,let x = e1 in e2 first
evaluatese1 to a valueM, then evaluatese2{M/x}, that is,
the outcome of substitutingM for each free occurrence ofx
in e2.

Next, we sketch the operational semantics of F and the
idea of safety with respect to a query. Aconfiguration, C,
is a multiset of running systems and logged events. We
equip configurations with a small-step reduction semantics:
C→C′ means thatC can take one step toC′. Most reduc-
tions arise from evaluation of expressions within systems as
described above.

Operational Semantics of F:

C ::= S| eventM | (C |C′) multiset of events and systems
C≡C′ equality up to laws that| is associative and
commutative, with∅ as neutral element.
Let C→C′ mean there is a computation step fromC to C′.
Let C→∗

≡ C′ if and only if eitherC≡C′ or C→∗ C′.

We express authentication and other properties in terms
of event-based queries. The general form of a query is
ev:E ⇒ ev:B1∨ ·· · ∨ev:Bn, which means that every reach-
able configuration containing an event matching the pat-
tern E also contains an event matching one of theBi pat-
terns.

Queries and Safety:

A query qis writtenev:E ⇒ ev:B1∨·· ·∨ev:Bn

for valuesE, B1, . . . ,Bn containing no free names.
Let σ stand for a substitution{M1/x1, . . . ,Mn/xn}.
Let C |= query ev:E ⇒ ev:B1∨·· ·∨ev:Bn if and only if

C′ ≡ eventBiσ |C′′ for somei ∈ 1..n,
wheneverC≡ eventEσ |C′.

Let Sbesafe for qif and only if C |= q wheneverS→∗
≡ C.

For example, a system issafefor queryev:Accept(x) ⇒
ev:Send(x) from Section2 if every reachable configuration
containingeventAccept(M) also containseventSend(M).

We introduceinterfaces Ito record the set of values, con-
structors, and functions imported or exported by a system.
Since our verification method does not depend on types, F
interfaces omit type structure and track only the distinction
between values, constructors, and functions, plus the ari-
ties of constructors and functions. The judgmentI ` S : I ′

meansS refers only to external values, constructors, and
functions listed inI , and provides declarations for the val-
ues, constructors, and functions listed inI ′. (Our technical

report contains the simple inference rules for this judgment.
These rules are an abstraction of the typing rules of F# for
the fragment we consider. They are automatically enforced
by the F# compiler.)

Interfaces:

µ ::= mention
x:val | f :ctor n | `:fun n value, constructor, or function

I ::= µ1, . . . ,µn interface (unordered sequence)
Let I ` S: I ′ meanS is well formed givenI , and exportsI ′.

For example, here is the F interface that corresponds to
the typed interface implemented by application code in Sec-
tion 2.

pkB: val, client: fun 1, server: fun 1

We define aPrim interface to describe the F primitives,
wherem is an arbitrary maximum width of tuples:

true: ctor 0, false: ctor 0, (tuplei: ctor i)i∈1..m,
failwith: fun 1, log: fun 1, Pi.name: fun 1, Pi.chan: fun 1,
Pi.send: fun 2, Pi.recv: fun 1, Pi.fork: fun 1

We define a robust safety property, that is, safety in the
presence of an opponent. To avoid vacuous failures, we
forbid the opponent from logging events. IfI is an interface,
an I -opponent is a systemO that depends only onI and
Prim, but notlog.

Formal Threat Model: Opponents and Robust Safety

Let S:: Ipub iff Prim` S: Ipub, Ipriv for someIpriv.
Let O be anI-opponentiff Prim\log, I ` O : I ′ for someI ′.
Let Sberobustly safe for q and Iiff

S:: I andS Ois safe forq for all I -opponentsO.

Hence, setting a verification problem for a systemSes-
sentially amounts to selecting the subsetIpub of its interface
that is made available to the opponent.

For the example protocol in Section2, letSbe the system
that consists of application code and symbolic libraries, and
let Ipub be the following interface.

Net.send: fun 2, Net.accept: fun 1,
Crypto.S: fun 1, Crypto.iS: fun 1,
Crypto.base64: fun 1, Crypto.ibase64: fun 1,
Crypto.utf8: fun 1, Crypto.iutf8: fun 1,
Crypto.concat: fun 1, Crypto.iconcat: fun 1,
Crypto.concat3: fun 1, Crypto.iconcat3: fun 1,
Crypto.mkNonce: fun 1, Crypto.mkPassword: fun 1,
Crypto.rsakeygen: fun 1, Crypto.rsapub: fun 1,
Crypto.rsaencrypt: fun 2, Crypto.rsadecrypt: fun 2,
Crypto.hmacsha1: fun 2,
pkB: val, client: fun 1, server: fun 1

Our verification problem is to show thatSis robustly safe
for ev:Accept(x) ⇒ ev:Send(x) andIpub.

8

4. Mapping F# to a Verifiable Model

We target the script language of ProVerif for verifica-
tion purposes. ProVerif can establish correspondence and
secrecy properties for protocols expressed in a variant of
the pi calculus, whose syntax and semantics are detailed
in our technical report. In this calculus, active attackers
are represented as arbitrary processes that run in paral-
lel, communicate with the protocol on free channels, and
perform symbolic computations. Given a script that de-
fines the protocol, the capabilities of the attacker, and some
target query, ProVerif generates logical clauses then uses
a resolution-based semi-algorithm. When ProVerif com-
pletes successfully, the script isrobustly safefor the tar-
get query, that is, the query holds against all (pi calculus)
attackers; otherwise, ProVerif attempts to reconstruct an at-
tack trace. ProVerif may also diverge, or fail, as can be
expected since query verification in the pi calculus is not
decidable. (ProVerif is known to terminate for the special
class oftaggedprotocols [14]. However, the protocols in
our main application area of web services rarely fall in this
class.) ProVerif is a good match for our purposes, as it of-
fers both general soundness theorems and an effective im-
plementation. Pragmatically, we also rely on previous pos-
itive experience in generating large verification scripts for
ProVerif. In principle, however, we may benefit from any
other verification tool.

To obtain a ProVerif script, we translate F programs to
pi calculus processes and rewrite rules. To help ProVerif
succeed, we use a flexible combination of several transla-
tions. To validate our usage of ProVerif, we also formally
relate arbitrary attackers in the pi calculus to those express-
ible in F.

At its core, our translation maps functions to processes
using the classic call-by-value encoding from lambda cal-
culus to pi calculus [29]. For instance, we may translate the
macfunction declaration of Section2

let macnoncepwd text=
Crypto.hmacsha1nonce(concat(utf8 pwd) (utf8 text))

into the process

!in(mac, (nonce,pwd,text,k));
out(k,Hmacsha1(nonce,Concat(Utf8(pwd),Utf8(text))))

This process is a replicated input on channelmac;
each message onmac carries the functional arguments
(nonce,pwd,text) as well as a continuation channelk. When
the function completes, it sends back a message that carries
its result on channelk. Similarly, we translate theserver
function declaration of Section2 into:

!in(server, (arg,kR));
newkX; out(accept, (address,kX)); in(kX,xml);
newkM; out(unmarshall, (xml,kM)); in(kM,(m,en,text));

newkV; out(verify, ((m,en,text),sk,pwd,kV)); in(kV,());
eventEv(Accept(text));
out(kR, ())

This process first calls functionacceptas follows: it gen-
erates a fresh continuation channelkX; it sends a message
that carries the argumentaddressandkX on channelaccept;
and it receives the function resultxml on channelkX. The
process then similarly calls the functionsunmarshalland
verify. If both calls succeed, the process finally logs the
eventAccept(text) and returns an (empty) result onkR.

Our pi calculus includes the same term algebra—values
built from variables, names, and constructors—as F, so val-
ues are unchanged by the translation. Moreover, our pi cal-
culus includes term destructors defined by rewrite rules on
the term algebra, and whenever possible after inlining, our
implementation maps simple functions to destructors. For
instance, we actually translate themacfunction declaration
into the native ProVerif reduction:

reduc mac(nonce,pwd,text) =
HmacSha1(nonce,Concat(Utf8(pwd),Utf8(text)))

Both formulations ofmacare equivalent, but the latter is
more efficient. On the other hand, complex functions with
side-effects, recursion, or non-determinism are translated as
processes. Our tool also supports a third potential transla-
tion for mac, into a ProVerif predicate declaration; predi-
cates are more efficient than processes and more expressive
than reductions. Our translation first performs aggressive
inlining of F functions, constant propagation, and similar
optimizations. It then globally picks the best applicable
formulation for each reachable function, while eliminating
dead code.

Finally, the translation gives to the pi calculus context
the capabilities available to attackers in F. For example, the
channelhttpchanrepresenting network communication is
exported to the context in an initialization message. More
interestingly, every public function coded as a process is
made available on an exported channel.

For instance, theserverfunction is available to the at-
tacker; accordingly, we generate the process:

!in(serverPUB, (arg,kR)); out(server, (arg,kR))

This enables the attacker to trigger instances of the server
using the public channelserverPUB. Conversely, the private
channelserveris used only by the translation, so that the
attacker cannot intercept local function calls.

Formally, we define translations for expressionse, dec-
larationsd, and systemsS. The translationE [[e]](x,P) is a
process that binds variablex to the value ofe and then runs
processP. The translationsS [[d]](P) andS [[S]](P) are pro-
cesses that elaborated andS, and then run processP. At the
top level, the translation[[S :: Ipub]] is a ProVerif script that
includes constructor definitions for the datatypes inS and

9

defines a process that elaboratesS and then exportsIpub.
Details of these translations are in the technical report.

Our main correctness result is the following.

Theorem 1 (Reflection of Robust Safety)If S :: Ipub and
[[S:: Ipub]] is robustly safe for q, then S is robustly safe for q
and Ipub.

In the statement of the theorem,S is the series of mod-
ules that define our system;Ipub is a selection of the val-
ues, constructors, and functions declared inS that are made
available to the attacker;q is our target security query; and
[[S:: Ipub]] is the ProVerif script obtained fromSandIpub.

The proof of Theorem1 appears in our technical report;
it relies on an operational correspondence between reduc-
tions on F configurations and reductions in the pi calculus.

We implement our translation as a command line
tool fs2pv that intercepts code after the F# compiler front-
end. The tool takes as input a series of module implemen-
tations definingS and module interfaces bounding the at-
tacker’s capabilities, much likeIpub. The tool relies on the
typing discipline of F# (which is stronger than the scope dis-
cipline of F) to enforce thatS :: Ipub. It then generates the
script [[S :: Ipub]] and runs ProVerif. If ProVerif completes
successfully, it follows that[[S:: Ipub]] is robustly safe forq.
Hence, by Theorem1, we conclude thatS is robustly safe
for q andIpub.

As a simple example, recall the systemS and its inter-
face Ipub, as stated at the end of Section3. Our tool runs
successfully on this input, proving thatS is robustly safe for
the queryev:Accept(x) ⇒ ev:Send(x) andIpub.

5. Verification of Interoperable Code

To validate our approach experimentally, we imple-
mented a series of cryptographic protocols and verified their
security against demanding threat models.

Tables1 and2 summarize our results for these protocols.
For each protocol, Table1 gives the program size for the
implementation (in lines of F# code, excluding interfaces
and code for shared libraries), the number of messages ex-
changed, and the size of each message, measured both in
bytes for concrete runs and in number of constructors for
symbolic runs. Table2 concerns verification; it gives the
number of queries and the kinds of security properties they
express. A secrecy query requires that a password (pwd)
or key (key) be protected; a weak-secrecy query further re-
quires that a weak secret (weak pwd) be protected from a
guessing attack. An authentication query requires that a
message content (msg), its sender (sender), or the whole
exchange (session) be authentic. Some queries can be veri-
fied even in the presence of attackers that control some cor-
rupted principals, thereby getting access to their keys and
passwords. Not all queries hold for all protocols; in fact

some queries are designed to test the boundaries of the at-
tacker model and are meant to fail during verification. Fi-
nally, the table gives the size of the logical model generated
by ProVerif (the number of logical clauses) and its total run-
ning time to verify all queries for the protocol.

For example, consider the simple authentication proto-
col of Section2, namedPassword-based MACin the tables;
its implementation has 38 lines of specific code; ProVerif
takes less than one second to verify the message authen-
tication query and to verify that the protocol protects the
password from guessing attacks. A variant of our imple-
mentation for this protocol (second row of Tables1 and2)
produces the same message, but is more modular and relies
on more realistic libraries; it supports distributed runs and
enables the verification of queries against active attackers
that may selectively corrupt some principals and get access
to their keys and passwords.

As a benchmark, we wrote a program for the four mes-
sage Otway-Rees key establishment protocol [34], with two
additional messages after key establishment to probe the se-
crecy of message payloads encrypted with this key. To com-
plete a concrete, distributed implementation, we had to code
detailed message formats, left ambiguous in the description
of the protocol. In the process, we inadvertently enabled a
typing attack, immediately found by verification. We ex-
perimented with a series of 16 authentication and secrecy
queries; their verification takes a few minutes.

A Library for Web Services Security As a larger, more
challenging case study, we implemented and verified sev-
eral web services security protocols.

Web services are applications that exchange XML mes-
sages conforming to the SOAP standard [23]. To secure
these exchanges, messages may include a security header,
defined in the WS-Security standard [32], that contains sig-
natures, ciphertexts, and a range of security elements, such
as tokens that identify particular principals. Hence, each
secure web service implements a security protocol by com-
posing mechanisms defined in WS-Security. Previous anal-
yses of such WS-Security protocols established correctness
theorems [21, 9, 7, 25, 26] and uncovered attacks [9, 10].
However, these analyses operated on models of protocols
and not on their implementations. In the rest of this section,
we present the first verification results for the security of
interoperable web services implementations.

First, we develop a library in F that implements the for-
mats and mechanisms of the web services messaging and
security specifications. Like WSE [28], our library is a par-
tial implementation of these specifications; we selected fea-
tures based on the need to interoperate with protocols im-
plemented by WSE. Our library provides several modules:

• Soapimplements the SOAP formats for requests, re-
sponses, and faults, and their exchange via HTTP.

10

Protocol Implementation
LOCs messages bytes symbols

Password-based MAC 38 1 208 16
Password-based MAC variant 75 1 238 21
Otway-Rees 148 4 74; 140; 134; 68 24; 40; 20; 11
WS password-based signing 85 1 3835 394
WS X.509 signing 85 1 4650 389
WS password-based MAC 85 1 6206 486
WS request-response 149 2 6206; 3187 486; 542

Table 1. Summary of example protocols

Protocol Security Goals Verification
queries secrecy authentication insiders clauses time

Password-based MAC 4 weak pwd msg no 69 0.8s
Password-based MAC variant 5 pwd msg, sender yes 213 2.2s
Otway-Rees 16 key msg, sender yes 155 1m50s
WS password-based signing 5 no msg, sender yes 456 5.3 s
WS X.509 signing 5 no msg, sender yes 460 2.6 s
WS password-based MAC 3 weak pwd msg, sender no 436 10.9s
WS request-response 15 no session yes 503 44m45s

Table 2. Verification Results

• Wsaddressingimplements the WS-Addressing [15]
header formats, for message routing and correlation.

• Xmldsig and Xmlenc implement the standards for
XML digital signature [18] and XML encryption [17],
which provide flexible formats for selectively signing
and encrypting parts of an XML document.

• Wssecurityimplements the WS-Security header for-
mat and common security tokens, such as username
tokens, encrypted keys, and X.509 certificates.

These modules rely on theCryptomodule for cryptographic
functions and a newXml module (with dual symbolic and
concrete implementations) for raw XML manipulation.

Applications written with this library produce and con-
sume SOAP messages that conform to the web services
specifications. Such applications can interoperate with
other conformant web services, such as those that use WSE.

The requirement to produce concrete, interoperable, and
verifiable code is quite demanding, but it yields very pre-
cise executable models for the informal WS-Security spec-
ifications, more detailed than any available in the literature.
For verifiability, we adopt a programming discipline that
reduces the flexibility of message formats wherever possi-
ble. In particular, we fix the order of headers in a message
and limit the number of headers that can be signed. We
avoid higher-order functions (such asList.map) and recur-
sion over lists and XML, and instead inline these functions
by hand.

The library consists of 1200 lines of F code. We can
quickly write security protocols using this library, such as
an authentication protocol that uses a password or an X.509
certificate to generate an XML digital signature (protocols
WS Password-based signingandWS X.509 signingin Ta-
bles1 and2). Only 85 additional lines of code need to be
written to implement these protocols; their verification takes
a few seconds.

A Simple Authentication Protocol over WS-Security
As a case study, we used our web services library to im-
plement an existing password-based authentication protocol
(WS password-based MAC) taken from the WSE samples.
The protocol is quite similar toPassword-based MAC, ex-
cept that the message is now a standards-compliant XML
document. This message is sent as the body of a SOAP
envelope that includes a WS-Security security header that
contains ausername token, representing the client’s identity,
and anX.509 token, representing the server’s identity. The
username token includes a freshly generated nonce used,
along with a shared password, to derive a key for message
authentication. This nonce is protected by encrypting the
entire username token with the server’s public key, using
XML encryption. The message is authenticated by an XML
digital signature that includes a cryptographic keyed hash
of the body using a key derived from the username token.

In earlier work [10], we wrote a non-executable formal
model for this protocol and analyzed it with ProVerif. Here,
we extract the model directly from a full-fledged implemen-

11

tation. Moreover, we encode a more realistic threat model
that enables the attacker to gain access to some passwords
and keys. In particular, thePrinsmodule has two additional
functions in its interface:leakPasswordandleakPrivateKey.

TheleakPasswordfunction is defined as follows:

let leakPassword(u:str) =
let pwd= getPasswordu in log Leak(u); pwd

When the attacker callsleakPasswordfor a principalu,
the function extracts the password foru from the database
and returns it to the attacker; but before leaking the pass-
word, the function logs an eventLeak(u) recording that the
principalu has been compromised.

We implement the client and server roles using our li-
brary, with slightly differentSendandAcceptevents from
the ones in Section2. To enable sender authentication, the
client logsSend(u,m), whereu is the principal that sends
the XML messagem. Similarly, on receiving the message,
the server logsAccept(u,m). The datatype of events and the
authentication query becomes

type Ev = Sendof str∗item
| Acceptof str∗item
| Leakof str

q = ev:Accept(u,m) ⇒ ev:Send(u,m) ∨ ev:Leak(u)

whereitem is the datatype of XML elements. The queryq
asks that the server authenticate the messagem and the
sending principalu, unlessu has been leaked. LetW be
the system that consists of the client and server code, the
symbolic libraries (Crypto, Net, Prins, andXml), and the
web services library. LetIpub be the interface of Section3
extended with theitemdatatype. Using fs2pv and ProVerif,
we prove thatW is robustly safe forq and Ipub. The veri-
fication of message and sender authentication takes only a
few seconds. As withPassword-based MAC, we also prove
that the password is protected even if it is a weak secret.

We experimentally checked that our concrete implemen-
tation complies with the web services specifications: we can
run our client with a WSE server, and conversely access
our server from a WSE client. Many details of our model
would have been difficult to determine from the specifica-
tions alone, without interoperability testing. The resulting
messages exchanged by the concrete execution are around
6 kilobytes in size, while the symbolic execution of the pro-
tocol generates messages with 486 symbols. The runtime
performance of our concrete implementation is comparable
to WSE, which is not surprising for this protocol, since the
execution time is dominated by XML processing and com-
munication.

We also implemented and verified an extension of the
protocol described above, where the server, upon accept-
ing the request message, sends back a response message
signed with the private key associated with its X.509 cer-
tificate. For this two message protocol, the security goals

are authentication of the request and the response, as well
as correlation between the messages. Correlation relies on
a mechanism calledsignature confirmation(described in a
draft revision of WS-Security), where the response echoes
and signs the password-based signature value of the request.
The protocol is namedWS request-responsein the tables;
ProVerif establishes all our authentication and correlation
goals, but takes almost 45 minutes for the analysis.

Our protocol implementation can also be used as part
of a larger web application, while still benefiting from our
results. The client functions can be exported as a library
invoked by applications written in any language running on
the CLR, such as C# or Visual Basic. Similarly, the server
functions can be embedded in the security stack of a web
server that checks all incoming messages for conformance
to the protocol before handing over the message body to
a web application written in any language. In both cases,
assuming the application code does not have access to secret
passwords or keys, the security results transparently apply.

6. Conclusions

We describe an architecture and programming model
for security protocols. For production use, protocol code
runs against concrete cryptography and low-level network-
ing libraries. For initial development, the same code runs
against symbolic cryptography and intra-process communi-
cation libraries. For verification, much of the code trans-
lates to a low-level pi calculus model for analysis against
a Dolev-Yao attacker. The attacker can be understood and
customized in source-level terms as an arbitrary program
running against an interface exported by the protocol code.

Our prototype implementation is the first, we believe, to
extract verifiable models from code implementing standard
security protocols, and hence able to interoperate with other
implementations. Our prototype has many limitations; still,
we conclude that it significantly reduces the gap between
symbolic models of cryptographic protocols and their im-
plementations.

Limits of our model As usual, formal security guarantees
hold only within the boundaries of the model being consid-
ered. Automated model extraction, such as ours, enables the
formal verification of large, detailed models closely related
to implementations. In our experience, such models are
more likely to encompass security flaws than those focusing
on protocols in isolation. Independently of our work, mod-
elling can be refined in various directions. Certified com-
pilers and runtime environments can give strong guarantees
that program executions comply with their formal seman-
tics; in our setting, they may help bridge the gap between
the semantics of F and a low-level model of its native-code
execution, dealing for instance with memory safety.

12

Our approach also crucially relies on the soundness of
symbolic cryptography with regards to one implementa-
tion of concrete cryptography, which is far from obvi-
ous. Pragmatically, our modelling of symbolic cryptog-
raphy is flexible enough to accommodate many known
weaknesses of cryptographic algorithms (introducing for in-
stance symbolic cryptographic functions “for the attacker
only”). There is a lot of interesting research on recon-
ciling symbolic cryptography with more precise computa-
tional models [3, 6]. Still, for the time being, these models
do not support automated analyses on the scale needed for
our protocols.

Related work The ideas of modelling protocol roles as
functions and modelling an active attacker as an arbitrary
functional context appear earlier in Sumii and Pierce’s stud-
ies of cryptographic protocols within a lambda calculus
[37, 38]. Unlike our functional language, which has state
and concurrency, their calculus cannot directly capture lin-
earity properties (such as replay detection via nonces), as its
only imperative feature is name generation. Several systems
[35, 31, 27, 36] operate in the reverse direction, and gen-
erate runnable code from abstract models of cryptographic
protocols in formalisms such as strand spaces, CAPSL, and
the spi calculus. These systems need to augment the under-
lying formalisms to express implementation details that are
ignored in proofs, such as message sizes and error handlers.
Going further in the direction of growing a formalism into
a programming language, Guttman, Herzog, Ramsdell, and
Sniffen [24] propose a new programming language CPPL
for writing security protocols; CPPL combines features for
communication and cryptography with a trust management
engine for logically-defined authorization checks. CPPL
programs can be verified using strand space techniques, al-
though there is no automatic support for this at present. A
limitation of all of these systems is that they do not imple-
ment standard message formats and hence do not interop-
erate with other implementations. In terms of engineering
effort, it seems easier to achieve interoperability by starting
from an existing general purpose language such as F# than
by developing a new compiler.

Giambiagi and Dam [20] take a different approach to
showing the conformance of implementation to model.
They neither translate model to code, nor code to model.
Instead, they assume both are provided by the programmer,
and develop a theory to show that the information flows al-
lowed by the implementation of a cryptographic protocol
are none other than those allowed by the abstract model of
the protocol. They treat the abstract protocol as a specifica-
tion for the implementation, and implicitly assume correct-
ness of the abstract protocol.

Askarov and Sabelfeld [5] report a substantial distributed
implementation within the Jif security-typed language of a

cryptographic protocol for online poker without a trusted
third party. Their goal is to prevent some insecure informa-
tion flows by typing. They do not derive a formal model of
the protocol from their code.

There are only a few works on compiling implemen-
tation files for cryptographic protocols to formal mod-
els. Bhargavan, Fournet, and Gordon [8] translate the pol-
icy files for web services to the TulaFale modelling lan-
guage [10], for verification by compilation to ProVerif. This
translation can detect protocol errors in policy settings, but
applies to configuration files rather than executable source
code. Other symbolic modelling [21, 9, 7, 25, 26] of web
services security protocols has uncovered a range of poten-
tial attacks, but has no formal connection to source code.
Goubault-Larrecq and Parrennes [22] are the first to derive
a Dolev-Yao model from implementation code written in C.
Their tool Csur performs an interprocedural points-to anal-
ysis on C code to yield Horn clauses suitable for input to
a resolution prover. They demonstrate Csur on code imple-
menting the initiator role of the Needham-Schroeder public-
key protocol.

There is also recent research on verifying implementa-
tions of cryptographic algorithms, as opposed to protocols.
For instance, Cryptol [19] is a language-based approach to
verifying implementations of algorithms such as AES.

Acknowledgements James Margetson and Don Syme
helped us enormously with using and adapting the F# com-
piler. Tony Hoare and David Langworthy suggested im-
provements to the presentation.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In28th ACM Symposium on Prin-
ciples of Programming Languages (POPL’01), pages 104–
115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus.Information and Computation,
148:1–70, 1999.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion). Journal of Cryptology, 15(2):103–127, 2002.

[4] X. Allamigeon and B. Blanchet. Reconstruction of attacks
against cryptographic protocols. In18th IEEE Computer Se-
curity Foundations Workshop (CSFW’05), pages 140–154,
2005.

[5] A. Askarov and A. Sabelfeld. Security-typed languages for
implementation of cryptographic protocols: A case study. In
10th European Symposium on Research in Computer Secu-
rity (ESORICS’05), volume 3679 ofLNCS, pages 197–221.
Springer, 2005.

[6] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. InProceedings

13

of the 10th ACM Conference on Computer and Communica-
tions Security (CCS’03), pages 220–230. ACM Press, 2003.

[7] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Se-
cure sessions for web services. In2004 ACM Workshop on
Secure Web Services (SWS), pages 11–22, Oct. 2004.

[8] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. In11th ACM Confer-
ence on Computer and Communications Security (CCS’04),
pages 268–277, Oct. 2004.

[9] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics
for web services authentication.Theoretical Comput. Sci.,
340(1):102–153, June 2005.

[10] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. InInternational
Symposium on Formal Methods for Components and Ob-
jects (FMCO’03), volume 3188 ofLNCS, pages 197–222.
Springer, 2004.

[11] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Ver-
ified interoperable implementations of security protocols.
Technical Report MSR–TR–2006–46, Microsoft Research,
2006.

[12] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In14th IEEE Computer Security
Foundations Workshop (CSFW’01), pages 82–96, 2001.

[13] B. Blanchet, M. Abadi, and C. Fournet. Automated verifica-
tion of selected equivalences for security protocols. In20th
IEEE Symposium on Logic in Computer Science (LICS’05),
pages 331–340, 2005.

[14] B. Blanchet and A. Podelski. Verification of cryptographic
protocols: Tagging enforces termination.Theoretical Com-
puter Science, 333(1-2):67–90, 2005.

[15] D. Box, F. Curbera, et al.Web Services Addressing (WS-
Addressing), Aug. 2004. W3C Member Submission.

[16] D. Dolev and A. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, IT–
29(2):198–208, 1983.

[17] D. Eastlake, J. Reagle, et al.XML Encryption Syntax and
Processing, 2002. W3C Recommendation.

[18] D. Eastlake, J. Reagle, D. Solo, et al.XML-Signature Syntax
and Processing, 2002. W3C Recommendation.

[19] Galois Connections.Cryptol Reference Manual, 2005.
[20] P. Giambiagi and M. Dam. On the secure implementation

of security protocols.Science of Computer Programming,
50:73–99, 2004.

[21] A. D. Gordon and R. Pucella. Validating a web service secu-
rity abstraction by typing. In2002 ACM workshop on XML
Security, pages 18–29, 2002.

[22] J. Goubault-Larrecq and F. Parrennes. Cryptographic pro-
tocol analysis on real C code. In6th International Confer-
ence on Verification, Model Checking and Abstract Interpre-
tation (VMCAI’05), volume 3385 ofLNCS, pages 363–379.
Springer, 2005.

[23] M. Gudgin et al. SOAP Version 1.2, 2003. W3C Recom-
mendation.

[24] J. D. Guttman, J. C. Herzog, J. D. Ramsdell, and B. T.
Sniffen. Programming cryptographic protocols. InTrusted
Global Computing (TGC’05), volume 3705 ofLNCS, pages
116–145. Springer, 2005.

[25] E. Kleiner and A. W. Roscoe. Web services security: A pre-
liminary study using Casper and FDR. InAutomated Rea-
soning for Security Protocol Analysis (ARSPA 04), 2004.

[26] E. Kleiner and A. W. Roscoe. On the relationship between
web services security and traditional protocols. InMath-
ematical Foundations of Programming Semantics (MFPS
XXI), 2005.

[27] S. Lukell, C. Veldman, and A. C. M. Hutchison. Au-
tomated attack analysis and code generation in a multi-
dimensional security protocol engineering framework. In
Southern African Telecommunication Networks and Appli-
cations Conference (SATNAC), 2003.

[28] Microsoft Corporation. Web Services Enhancements
(WSE) 2.0, 2004. Athttp://msdn.microsoft.com/
webservices/building/wse/default.aspx .

[29] R. Milner. Functions as processes.Mathematical Structures
in Computer Science, 2(2):119–141, 1992.

[30] R. Milner. Communicating and Mobile Systems: theπ-
Calculus. CUP, 1999.

[31] F. Muller and J. Millen. Cryptographic protocol genera-
tion from CAPSL. Technical Report SRI–CSL–01–07, SRI,
2001.

[32] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.
OASIS Web Services Security: SOAP Message Security 1.0
(WS-Security 2004), Mar. 2004. OASIS Standard 200401.

[33] R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computers.Commun.
ACM, 21(12):993–999, 1978.

[34] D. Otway and O. Rees. Efficient and timely mutual authen-
tication. Operation Systems Review, 21(1):8–10, 1987.

[35] A. Perrig, D. Song, and D. Phan. AGVI – automatic genera-
tion, verification, and implementation of security protocols.
In 13th Conference on Computer Aided Verification (CAV),
LNCS, pages 241–245. Springer, 2001.

[36] D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic
cryptographic protocol Java code generation from spi calcu-
lus. In18th International Conference on Advanced Informa-
tion Networking and Applications (AINA 2004), volume 1,
pages 400–405, 2004.

[37] E. Sumii and B. C. Pierce. Logical relations for encryp-
tion. In 14th IEEE Computer Security Foundations Work-
shop (CSFW’01), pages 256–269, 2001.

[38] E. Sumii and B. C. Pierce. A bisimulation for dynamic seal-
ing. In31st ACM Symposium on Principles of Programming
Languages (POPL’04), pages 161–172, 2004.

[39] D. Syme. F#, 2005. At http://research.
microsoft.com/projects/ilx/fsharp.aspx .

[40] T. Woo and S. Lam. A semantic model for authentication
protocols. InIEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 178–194, 1993.

14

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://research.microsoft.com/projects/ilx/fsharp.aspx
http://research.microsoft.com/projects/ilx/fsharp.aspx

	. Introduction
	. A Simple Message Authentication Protocol
	. Formalizing a Subset of F#
	. Mapping F# to a Verifiable Model
	. Verification of Interoperable Code
	. Conclusions

