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ABSTRACT
We intend to narrow the gap between concrete implementations of
cryptographic protocols and their verified models. We develop and
verify a small functional implementation of the Transport Layer
Security protocol (TLS 1.0). We make use of the same executable
code for interoperability testing against mainstream implementa-
tions, for automated symbolic cryptographic verification, and for
automated computational cryptographic verification. We rely on a
combination of recent tools, and we also develop a new tool for
extracting computational models from executable code. We obtain
strong security guarantees for TLS as used in typical deployments.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
C.2.0 [Computer-Communication Networks]: Security and Pro-
tection

General Terms
Security, Verification

1. VERIFYING PROTOCOLS
AND IMPLEMENTATIONS

There has been much recent progress in formal methods and tools
for cryptography, enabling, in principle, the automated verification
of complex security protocols. In practice, however, these methods
and tools remain difficult to apply. Often, verification occurs inde-
pendently of the development process, rather than during design,
prototyping, and testing. Also, as a protocol or its implementations
evolve, it is difficult to carry over security guarantees from past for-
mal verification. Moreover, the verification of a system that uses a
given protocol involves more than the cryptographic verification of
an abstract model; it may rely as well on more standard analyses
of code (e.g. to ensure memory safety) and system configuration
(e.g. to enforce policy). For these reasons, we are interested in
the integration of modern cryptographic verifiers into the arsenal of
software testing and verification tools.
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Symbolic vs Computational Cryptography. Two complementary
approaches have been successfully applied to protocol verification.

Symbolic models essentially treat cryptographic primitives as
black boxes and focus on the logical properties of the protocol,
as pioneered by Needham and Schroeder [1978] and formalized by
Dolev and Yao [1983]. They have led to efficient automated tools
[e.g. Blanchet, 2001], widely applied to the verification of large
protocols.

Computational models tackle more concretely cryptographic as-
sumptions; they treat primitives as probabilistic algorithms over
concrete bitstrings, and reason about the advantage of an adversary
with bounded computational capabilities. Computational models
sometimes lead to long, delicate, hand-crafted proofs; automated
tools are much more recent [Blanchet, 2006].

Implementations vs Abstract Models. Protocol specifications in-
clude many details; most (but not all) of them are of no importance
for security. In the process of distilling a formal cryptographic
model, most of these details are discarded. When is a protocol
model oversimplified? In contrast with formal guarantees proved
within the model, the relevance of the model relies on the expe-
rience of the formalist. The problem is compounded when con-
sidering protocol implementations. Thus, as far as possible, we
propose to verify detailed protocol implementations and deploy-
ments, rather than simplified abstract models. Using automated
tools based on sound proof techniques, the details can either be
safely erased, or dealt with by brute-force analysis.

From Implementations to Cryptographic Models. More recent
works [Goubault-Larrecq and Parrennes, 2005, Bhargavan et al.,
2006] advocate the automatic extraction and verification of sym-
bolic cryptographic models from executable code.

Bhargavan et al. [2006] verify protocol implementations written
in F# [Syme, 2005], a dialect of ML, by compilation to symbolic
models in ProVerif [Blanchet, 2001]. Their approach is to verify
as much code as possible, while providing hand-written models for
the rest, such as the core cryptographic libraries, which use bit-
strings for concrete execution and symbolic terms for verification.

In this work, we rely on their tools for symbolic verification, and
also experiment with direct computational cryptographic verifica-
tions of protocol implementations, by compilation to CryptoVerif,
a recent tool for computational cryptography [Blanchet, 2006].

Our Approach. The picture below outlines our approach to pro-
tocol verification. It involves developing, testing, and verifying a
small reference implementation of the protocol plus typical appli-
cations. In contrast with specialized modelling languages for pro-
tocols, our use of a standard development platform enables early
testing, for instance to disambiguate the specification, experiment
with potential attacks, and confirm functional correctness.
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Verification consists of selecting a part of the implementation,
writing additional “verification harness” code that specifies the at-
tacker model, the cryptographic assumptions, and the target secu-
rity properties, and then compiling their combination to some auto-
mated prover. Inasmuch as the verification tool chain is automated,
one can easily re-verify the code base as it evolves.

In our experience, symbolic and computational verifications are
complementary. Computational verification is more precise but
more difficult to achieve; we obtain results only for the crypto-
graphic core of the protocol implementation. Symbolic verification
typically applies to the whole protocol, sometimes even including
the application, but does not detect low-level cryptographic errors.
Overall, we believe that the overhead of verification is getting af-
fordable, in comparison with design, development, and testing. The
next generation of tools could enable their integration in the devel-
opment process.
Implementing & Verifying TLS. As an extended case study, this
paper considers implementations of TLS 1.0, one of the most widely
deployed communications protocols. Due to its popularity, many
systems embed an implementation of TLS and rely on its security
for communications.

As well as being of practical importance, TLS is a well-under-
stood protocol, with a carefully written, self-contained specifica-
tion, a series of successive versions, and a large body of related
verification work, providing a detailed history of security vulnera-
bilities and improvements. Also, TLS is not an academic protocol,
optimized (or designed) for verification purposes. This sometimes
complicates its security analysis, but also provides a good bench-
mark for assessing verification techniques.
Contributions.

1. We program a small functional implementation of TLS. Us-
ing simple client and server code, we confirm that our imple-
mentation interoperates with mainstream implementations.

2. Relying on a combination of model-extraction and verifi-
cation tools, we obtain a range of positive security results,
covering both symbolic and computational cryptographic as-
pects of the protocol. We thus provide security guarantees
for code as it is used in typical deployments of TLS.

3. To support computational verification, we develop a new tool
for extracting cryptographic models from F# code. We be-
lieve this enables the first automated verification of executable
code against standard cryptographic assumptions.

4. We review known weaknesses for various versions of TLS,
and discuss their detection as part of our verification process,
for the corresponding weakened implementations of TLS.

Contents. Section 2 recalls the main security features of TLS. Sec-
tion 3 outlines our reference implementation and reports on inter-
operability. Section 4 presents our results using symbolic models;
it also discusses formal security issues and related work. Section 5
describes a new tool for extracting computational models and relat-
ing computational security assumptions to concrete cryptography
APIs. Section 6 presents our results using computational models;
it also discusses cryptographic issues and related work.

An extended version of this paper and sample code appear at
http://msr-inria.inria.fr/projects/sec/fs2cv.

2. TRANSPORT LAYER SECURITY
The Secure Session Layer (SSL) protocol was promoted by Net-
scape as a means of providing privacy over the Internet, by secur-
ing HTTP connections between web browsers and servers. Its first
public version, SSL 2.0 [Hickman, 1995], was released in 1994. Its
successor, SSL 3.0 [Frier et al., 1996], includes major changes and
addresses serious security flaws. It then evolved into an Internet
standard, named Transport Layer Security (TLS 1.0) [Dierks and
Allen, 1999]. The latest standard, TLS 1.1 [Dierks and Rescorla,
2006] and the latest draft, TLS 1.2 [2008] include further improve-
ments and clarifications, notably changes designed to thwart new
cryptographic attacks. Since the three TLS versions are relatively
similar, we refer to them generically as the TLS protocol(s).

To facilitate interoperability tests, our code targets mostly TLS
1.0, the latest largely deployed version of the protocol. Next, we
briefly recall its main security features. We follow the notations
and terminology of the RFC [Dierks and Allen, 1999]; we refer to
this document for a more general presentation.

TLS 1.0. TLS provides secure communications between a client
and a server, with certificate-based server authentication and, op-
tionally, client authentication. The protocol distinguishes between
sessions and connections; from an established session, each party
can derive one or more connections, and use them to send series of
messages. The protocol has two layers. The lower layer consists
of the record protocol, for exchanging messages using current con-
nection parameters. The upper layer includes a handshake protocol
for establishing sessions, as well as application protocols.

Record Protocol. The record protocol receives uninterpreted data
from the upper layer. This data is first (possibly) split and com-
pressed, then formatted into a series of records, and passed to a
lower, unprotected transport protocol.

Both parties independently maintain state for the read and write
directions of the connection. Each record is protected depending
on the security parameters negotiated by the handshake protocol,
which mostly include a ciphersuite, and on the current connection
states (e.g. keys and IVs). A ciphersuite specifies a key exchange
mode (either Diffie-Hellman- or RSA-based), an encryption algo-
rithm, and a hash algorithm. The encryption and hash algorithms
are relevant only to the record protocol, while the key exchange
mode is relevant only to the handshake protocol.

Initially, the ciphersuite is set to null, indicating no security trans-
formations. Thus, the messages of the handshake protocol are not
protected by the record protocol, until shared security parameters
can be established.

After the handshake, each fragment is protected using the mac-
then-encrypt technique, and prefixing the result with a record header.
The record header has three fields: the content type of the sub-
protocol the fragment belongs to, the version of the protocol used
for processing this record, and the fragment length. The mac is
computed by applying HMAC (with the hash algorithm and hash
secret given by the security parameters and current state) to the
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concatenation of the fragment, the record header, and the fragment
sequence number. The fragment and the resulting mac are then fed
to the encryption algorithm, in cipher block chaining (CBC) mode,
after padding to a length that is a multiple of the block size.
Handshake Protocol. The handshake protocol authenticates the
server, optionally authenticates the client, establishes a shared mas-
ter secret, derives cryptographic materials for their connections,
and confirms that both parties agree on their exchanged parame-
ters. In this paper, we consider only RSA-based modes. We begin
with the message flow for a handshake with an anonymous client:

ClientHello ------>
ServerHello
Certificate

<------ ServerHelloDone
ClientKeyExchange
[ChangeCipherSpec]
Finished ------>

[ChangeCipherSpec]
<------ Finished

For our discussion, it is convenient to decompose the protocol into
four phases, explained in more detail below.

1. the client and the server exchange connection parameters by
means of the hello messages;

2. they establish an intermediate shared pre_master_secret (pms);
when using RSA, the client chooses pms, so the phase con-
sists of a single ClientKeyExchange message;

3. they each compute a shared master_secret (ms); this enables
the record layer to derive fresh cryptographic materials for
each direction of the record protocol;

4. they exchange ChangeCipherSpec messages, immediately fol-
lowed by Finished messages, to confirm that they share match-
ing keys, check server authentication, and ensure integrity of
the handshake messages.

The Hello messages include fresh nonces, a session identifier
picked by the server, and session parameters; their logical content is

ClientHello(ver_min,ver_max,cr,rsid,cipher_suites,comp_methods)
ServerHello(version, sr, sid, cipher_suite, comp_method)

The Certificate message carries the server’s X.509 certificate; the
ServerHelloDone message has no payload.

TLS enables the negotiation of some connection parameters, that
is, a protocol version, a ciphersuite, and a compression method.
These parameters are passed unprotected in the Hello messages:
the client expresses its preference as a range of parameters, then
the server sets the session parameters within that range. The nego-
tiation is authenticated later by the Finished messages, which them-
selves depend on these parameters. This circularity is a source of
concerns for TLS, discussed in Section 4.

The client announces its highest supported version in the ver_max
field of ClientHello and includes its lowest supported version ver_min
in the version field of the record header that encloses ClientHello
(provisionally using this version’s record format). The server an-
nounces its choice in the version field of ServerHello, and also in-
cludes it in the enclosing record header.

The ClientKeyExchange message includes the RSA encryption
of a fresh random pms, using the public key of the received cer-
tificate. In order to confirm the highest version supported by the
client, the protocol version byte ver_max is embedded in pms, and
also influences the padding before RSA encryption:

pms = ver_max | random

where | is bitstring concatenation and random consists of 46 ran-
dom bytes.

From the pms and exchanged random values, both parties com-
pute the master secret using an ad-hoc pseudo-random function
(PRF). This function takes as input a secret and a seed, and gen-
erates a stream of bytes, using HMAC (with two hash algorithms,
MD5 and SHA1) as base primitive. For generating ms, the secret
is pms and the seed is the concatenation of a fixed bitstring and the
two nonces exchanged in the hello phase:

ms = PRF(pms, ‘‘master secret’’| cr | sr )

The materials for the record protocol are generated similarly:

key_block = PRF(ms, ‘‘key expansion’’| sr | cr )

is truncated and split into six secrets for the initial read and write
connections: two encryption keys, two mac keys, and two IVs.

The two ChangeCipherSpec messages appear in brackets be-
cause they are not considered part of the handshake itself; they
signal the use of the newly-negotiated algorithms and keys, so the
Finished messages are the first to be maced-and-encrypted by the
record protocol. These Finished messages contain a (hashed) tran-
script of the handshake to this point; their logical contents is

verify_data = PRF(ms, finished_label | MD5(hsm) | SHA1(hsm))

where hsm is the concatenation of the sequence of handshake mes-
sages (including handshake subprotocol headers, but not the outer
TLS record headers). The resulting authentication guarantees are
detailed in Section 4. After a successful handshake, the parties can
start exchanging application data in both directions.

Resumption Protocol. Instead of performing a full handshake,
TLS offers the possibility of resuming a previously established ses-
sion, or even duplicate an existing session to derive further connec-
tions.

Assume parties have already performed a successful handshake,
thus establishing a session. The client can propose an abbreviated
handshake by sending an Hello message that includes a fresh nonce
and the old session identifier. If the server accepts this session iden-
tifier, both parties skip phases 2–3, immediately derive fresh cryp-
tographic materials, and exchange Finished messages. Thus, the
message flow for the abbreviated handshake is:

ClientHello ------>
ServerHello

[ChangeCipherSpec]
<------ Finished

[ChangeCipherSpec]
Finished ------>

Otherwise, a handshake continues as in the general case.

3. REFERENCE IMPLEMENTATION
Our code is entirely written in F# [Syme, 2005], a dialect of ML,

and executed on the .NET runtime. Its structure and programming
style reflects our goal to use the same code, as far as possible, for
four different tasks: symbolic execution for debugging; concrete
execution for interoperability testing; symbolic verification; and
computational verification.

TLS is usually implemented as a library, linked to web-based ap-
plications such as browsers or web servers. The figure below gives
the structure of our reference TLS implementation; each box rep-
resents an F# module; each arrow represents a direct dependency
between modules. Hence, the modules Handshake and Record im-
plement the handshake and record protocols, respectively; and their
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interfaces enable some Application module to send and receive mes-
sages over TLS. Module Formats contains functions to build and
parse formatted TLS messages; it relies on Conversions for low-
level encodings of strings and TLS-specific tags. Modules Crypto,
Net, and Prins provide library functions that are not specific to TLS.

In the rest of this section, we outline the interfaces and imple-
mentations of these modules. (The full paper gives more details.)

Libraries for Networking and Cryptography. The module Net de-
fines functions to set up and use TCP connections. For example,
by calling connect with a URI u, a client application can create a
TCP socket to a server listening at u. It can then call the func-
tions send and recv to exchange messages on this connection. The
module Crypto defines standard cryptographic primitives. For ex-
ample, the Record module calls hmacsha1 and aes_encrypt to mac-
and-encrypt messages, while the Handshake module creates a fresh
pms using mkNonce and encrypts it using rsa_encrypt. The module
Prins (for principals) defines functions to create and retrieve X.509
certificates.

Our concrete implementation of these libraries relies on vari-
ous classes in the .NET Framework; for instance, the Crypto mod-
ule implements hmacsha1 by calling the ComputeHash method in
System.Security.Cryptography.HMACSHA1, and Net uses System.
Net.Sockets.TcpClient to implement connect.

Following an approach proposed by Bhargavan et al. [2006] (see
the figure in Section 1), we also develop a symbolic implemen-
tation of these libraries, for use in symbolic verification and de-
bugging. In this version, the Crypto module models hashing and
encryption as algebraic datatype constructors for an abstract type;
for instance, hmacsha1(key,text) simply returns a term HMACSHA1
(key,text) representing the keyed hash; Net models connections as
communications on local channels between processes; Prins mod-
els the X.509 store as a local private database.

Both versions of the library modules implement the same inter-
faces. By compiling our reference TLS implementation and appli-
cations against the concrete libraries, we obtain an executable that
can be deployed on the network and tested against remote clients
and servers. By compiling against the symbolic libraries, we ob-
tain an executable that can be used for generating symbolic traces
for local debugging. For symbolic (and computational) verifica-
tion, we assume that the concrete implementation of these libraries
follows their models; as such, these libraries represent the trusted
computing base for our verification results.

Record Module. The Record module exports two functions:

val send: ConnectionId→ bytes→ unit
val recv: ConnectionId→ bytes

It uses a database of active connections, indexed by ConnectionIds.
The handshake protocol populates this database with new connec-
tions as they are established.

The type Connection represents an established TLS connection:
type Connection = {

net_conn: Net.conn;
crt_version: ProtocolVersion;
read: ConnectionState;
write: ConnectionState; }

type ConnectionState = {
cipher_state: CipherState;
mackey: bytes;
seq_num: int;
sparams: SecurityParameters; }

It is a record type storing the underlying TCP connection net_conn,
the version used during this connection, and the read and write
connection states. Each read or write connection state is a record
containing the cipher state (represented in our case, i.e. for block
ciphers, by the encryption key and the current initialization vec-
tor), the key used for macing mackey, the current sequence num-
ber seq_num, and the security parameters sparams established by
the handshake protocol (including, for example, the encryption and
hash algorithms).

Given an established TLS connection with identifier id, the send
and recv functions write and read payloads over the connection, in
accordance with the record protocol. As they process messages,
they log the following security events:

Send(id,entity,payload)
Recv(id,entity,payload)

where entity is either Client or Server. The event Send(id,entity,
payload) logs that entity sends message payload over the connection
id. The event Recv(id,entity,payload) logs that entity accepts mes-
sage payload as valid over the connection id (after cryptographic
record processing, before passing it to the application). These events
have no effect at runtime; they are used only to specify our security
goals for verification.

To illustrate our coding style, we detail the code for the recv
function, which takes one argument, a connection identifier connid,
and returns a record payload msg.

let recv (connid:ConnectionId) =
let conn = getConnection connid in
let conn, input = recvRecord conn in
let conn, msg = verifyPayload conn CT_application_data input in
let id,entity = connid in Pi.log tr (Recv (id,entity,msg));
storeConnection connid conn;
msg

The function is written as a sequence of function calls. It first calls
getConnection to retrieve the connection record conn; it then calls
recvRecord, which blocks until the next message input is received
on the connection; it calls verifyPayload (detailed below) to decrypt
the payload msg and verify the mac; it calls Pi.log to log a Recv
event as described above; and finally calls storeConnection to up-
date the connection database with the new connection parameters
before returning msg. The cryptographic checks are all performed
in the verifyPayload function:

let verifyPayload (conn:Connection) (ct:ContentType) (input:bytes)=
let (bct, bver, blen, ciphertext) = parseRecord input in
let rct, rver, rlen = getAbstractValues bct bver blen in
let ver = conn.crt_version in
if rver = ver then

let connst = conn.read in
let connst, plaintext = decrypt ver connst ciphertext in
let payload, recvmac = parsePlaintext ver connst plaintext in
let len = bytes_of_int 2 (length payload) in
let bseq = bytes_of_seq connst.seq_num in
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let maced = append5 bseq bct bver len payload in
let conn = updateConnection_read conn connst in
checkContentType ct rct payload;
if hmacVerify connst maced recvmac = true then

(conn,payload)
else failwith "bad record mac"

else failwith "bad version"

The function takes three arguments: a connection record conn, an
expected content type, and a message input received over conn,
and returns an updated connection conn and the received message
payload. Most of the function prepares materials for calling the
two cryptographic functions decrypt and hmacVerify. The call to
decrypt decrypts ciphertext using the algorithm, key, and initial-
ization vector stored in the connection read state connst, to yield
plaintext and a new connst with an updated initialization vector. The
decrypted plaintext consists of a payload and a mac recvmac. The
call to hmacVerify verifies the mac, using the algorithm and mac
key in connst, thereby authenticating the sequence number, content
type, protocol version, ciphertext length, and payload. The func-
tion fails with an exception if the mac is incorrect, if the version,
content type, or sequence number do not match the expected val-
ues, if the message is an alert, or if any parsing function fails. In all
other cases, it returns an updated connection state and payload.
Coding for Verification. As illustrated in these two functions,
our subset of F# is rich enough to write modular code that ac-
counts for detailed message formats, cryptographic operations, and
security events. Our code uses typical functional language fea-
tures such as nested function applications, tuples, records, algebraic
datatypes, pattern matching, exceptions, and modules. However,
we avoid other features such as references, higher-order functions,
and classes, because they are not presently supported by our veri-
fication tools. Moreover, since every library function or operating
system call that we use must be given a symbolic model, we define
and use only the minimal set of libraries described above. (We do
not use, for example, any file I/O operation.)

We use recursive functions sparingly, because they usually lead
to non-terminating runs of ProVerif, and are difficult to verify in
CryptoVerif. For example, we have a recursive list membership
function for lists of publicly known elements, but no list concate-
nation over private data. Moreover, we tend to separate purely
functional code from code that has side effects, such as events
or networks operations. Purely functional code like verifyPayload
translates to reductions in ProVerif and equations in CryptoVerif,
whereas functions like recv translate to processes, which are more
complex to verify.
Handshake Module. The Handshake module exports four func-
tions that enable client and server applications to set up new ses-
sions, resume old sessions, and close connections.

val connect: Net.conn→ServerName→ConnectionId ∗ SessionId
val resume: Net.conn→SessionId→ConnectionId ∗ SessionId
val accept: Net.conn→CertName→ConnectionId ∗ SessionId
val close: ConnectionId→ bool→ unit

It maintains a database of active sessions indexed by SessionIds.
The type Session characterizes a TLS session:
type Session = {

sid: bytes;
ms: bytes;
server_cert: Certificate;

ch: ClientHello;
sh: ServerHello;
pms: bytes; }

It is a record of a session identifier sid, the master secret ms, the
server certificate, the client and server Hello message and the pms.
All these fields are exchanged during the full handshake which es-
tablished the session. The fields in the left column suffice to run the
protocol; the other fields are included only for the security analysis.

A server calls accept to listen on a TCP connection for a TLS
connection request; when a client calls connect over the same TCP
connection, the client and server engage in the full handshake pro-
tocol to establish a new session and a new connection in each di-
rection. Upon completion of the handshake protocol, both accept
and connect construct their own Session record and Connection

record and populate them with all the values authenticated by the
handshake protocol, including, for instance, the session identifier,
ciphersuite, security parameters, and computed keys. To indicate
the completion of the protocol and agreement on these values, the
two functions log the following event

SendFinished(id,entity,subject,pms,session,read,write)

and the AcceptFinished event with the same parameters. Each event
contains the connection id, the entity which logs it, the subject
of the server’s certificate, the pre_master_secret, a full Session
record, and read and write connection states for the Connection
records in the indicated direction.

Clients can call resume for such sessions to trigger the resump-
tion protocol. Upon its completion, the resume function logs the
following event:

SendFinishedRes(id,entity,subject,pms,session,read,write,ch,sh)

and the AcceptFinishedRes event with the same parameters, which
have the same meaning as for the full handshake. In addition the
client and server Hello records are tracked. Note that all fields in
session (including for example session.ch and session.sh) refer
to the initial full handshake, while the last two parameters ch and
sh refer to the Hello messages in the abbreviated handshake. The
servers executing accept also log these two events if a resumption
protocol has been completed.
Sample Applications and Interoperability. Using our reference
implementation, we write three applications:

• a client that connects to an arbitrary HTTPS URI and re-
trieves a web page over a TLS connection;

• a server that listens at an HTTPS URI and serves up a single
web page;

• a mutually authenticated client-server application where the
client authenticates to the server using a password over a TLS
connection.

In our experiments, our client application can access basic pages
from a variety of web servers running IIS or Apache. Our server ap-
plication successfully serves pages to clients running Internet Ex-
plorer or Firefox. Both applications successfully resume sessions,
when triggered for instance to refresh a web page displayed in a
previous session. Hence, we experimentally establish that our ref-
erence implementation is interoperable with the mainstream TLS
implementations used by these browsers and web servers, including
OpenSSL and the Windows CryptoAPI. Moreover, as our client-
server application demonstrates, applications with additional secu-
rity properties can be built on top of our TLS implementation.

In comparison to mainstream implementations, our reference im-
plementation supports a smaller subset of the standard. We focus
on TLS 1.0 in RSA mode for the key exchange. In this mode, we
support all ciphersuites using AES, DES, RC4, SHA, and MD5 al-
gorithms. Our implementation does not support data compression,
nor fragmentation; it does not send alerts and fails silently upon re-
ceiving a bad message. Despite these limitations, our experiments
show that it is adequate for writing simple client and server applica-
tions. We found that having an implementation to experiment with
helped to understand disambiguate details of the specification. It
also enabled us to try out attacks on our and other implementations.
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4. SYMBOLIC VERIFICATION
Our symbolic verification is based on an existing tool chain con-

sisting of a model extractor [Bhargavan et al., 2006], that com-
piles code written in F# to process models in an applied pi cal-
culus [Abadi and Fournet, 2001], and the state-of-the-art verifier
ProVerif, which analyzes such models automatically. For many
protocol implementations, the verifier either proves the security
goals or produces a counter-example. In some cases, however, the
analysis may not terminate; in others, it may take several gigabytes
of memory. To use this tool chain, we write symbolic implementa-
tions for low-level libraries as described in Section 3, we define the
attacker model in terms of the interface exposed by these libraries
and by our reference implementation, and we write our authentica-
tion and secrecy goals as correspondence between events logged by
functions in the interface. Then we can extract a symbolic model
from the reference implementation and verify security queries au-
tomatically. If the tool proves a query, we obtain a security the-
orem about the protocol implementation, against all attackers that
use its interface. Our results rely on the correctness of the core
translations and algorithms underpinning the model extractor and
ProVerif [Blanchet, 2001, Bhargavan et al., 2006].
Attacker Model. The attacker capabilities are given by the inter-
faces of the modules: Net, Crypto, Prins, Handshake, and Record.
Access to the functions given in these interfaces yields a (standard)
symbolic threat model, where the attacker can

• control the network (Net), and perform cryptographic opera-
tions (Crypto),

• create any number of servers by generating certificates and
compromise any server by reading its private key (Prins),

• open arbitrarily many sessions between clients and servers of
its choice, obtaining connection and session ids, and trigger
the resumption protocol for any session id (Handshake),

• send and receive messages over the record layer (Record).

Let Sys denote the program consisting of the symbolic imple-
mentations of the libraries Net, Crypto, Prins, and Conversions,
along with our reference implementations for Handshake, Record,
and Formats. We prove authentication and secrecy properties for
this full program, although in the following, we describe the verifi-
cation results separately for each part of the protocol.
Handshake Protocol. We first present symbolic authentication re-
sults for the handshake protocol. Authentication is specified as
a correspondence from events triggered when a party accepts the
peer’s Finished message to prior events triggered when the party
sends that message. The more information these events record, the
stronger the property. We say that a server has been corrupted when
its private key has been leaked to the attacker. We say that a client
is corrupted if its pms is known to the attacker.

THEOREM 1 (FULL HANDSHAKE AUTHENTICATION).
In any run of Sys , for any AcceptFinished event, either there is a
SendFinished event with opposite entities (client/server or server/-
client) and matching connection and session parameters, or one of
the entities is corrupted.

(The precise ProVerif queries for all theorems in this section are
included in the full version.) Here, almost all fields of the session
records at the client and server are correlated. These include sid,
pms, ms, server_cert, and also cr, sr, version, and cipher_suite from
ch and sh in session. The derived cryptographic materials (within
the read and write connection states, from the client’s viewpoint)

are also correlated. These variables provide complete coverage of
the current state of both parties as they switch to the application
protocol, as well as additional parameters used in the negotiation.

As a minor, technical point, there is no formal agreement on
the client’s lowest supported version for TLS (ver_min): the adver-
sary may change this value, together with the first message record
format, in ClientHello, without detection. However, this seems in-
nocuous as long as (1) the client checks that version ≥ ver_min and
(2) whenever the server accepts the first message, version does not
depend on ver_min.
Resumption Protocol. We obtain a similar authentication theorem
for the resumption protocol.

THEOREM 2 (RESUMPTION AUTHENTICATION). In any run
of Sys , for any AcceptFinishedRes event, either there is a SendFin-
ishedRes event with opposite entities (client/server or server/client)
and matching connection and session parameters, or one of the en-
tities is corrupted. Moreover, within each AcceptFinishedRes and
SendFinishedRes event, the new ServerHello message has the same
session id and ciphersuite as the old session.

We also prove secrecy queries for all the secrets generated dur-
ing the handshake, including the pms, ms, and all four keys. These
queries assert syntactic secrecy; they show that the secret values are
not obtained by the attacker, unless he has compromised the server
or controls the client. For brevity, we omit the formal security the-
orem which can be found in the full version.
Record Protocol. For the record protocol, authentication is spec-
ified as a correspondence between the Recv events emitted when
a receiver accepts a message to prior Send events emitted when
messages are sent.

THEOREM 3 (RECORD AUTHENTICATION). In any run of
Sys , for any Recv event, either there is a Send event with oppo-
site entities (client/server or server/client) and matching connec-
tion identifiers and records or one of the entities is corrupted.

In addition, we prove the syntactic secrecy of record payloads,
when the payloads are freshly generated values. As usual, the pay-
load is secret only if the server is uncorrupted and the client is not
controlled by the attacker. The formal secrecy theorem appears in
the full paper.
Reconstructing Known Attacks on TLS. Previous formal and in-
formal analyses of SSL and TLS have uncovered a range of vul-
nerabilities and attacks. For instance, SSL 2.0 does not guarantee
integrity of many elements of the handshake negotiation, including
the ciphersuite. Hence, if both client and server prefer to use strong
cryptography but also allow weak cryptography, then an attacker
may convince them both to establish a session with weak cryptog-
raphy. In our model, implementations of SSL 2.0 do not satisfy
handshake authentication (Theorem 1). Our tools fail to prove our
authentication queries for such implementations, and instead gen-
erate counter-examples indicating the attack.

Recent versions (since SSL 3.0) provide more extensive integrity
guarantees for the handshake. Still, Wagner and Schneier [1996]
found several attacks on the handshake and resumption protocols
of SSL 3.0. They found that if both parties also support SSL 2.0
for backward compatibility, then version rollback attacks become
possible: an attacker can convince them to use SSL 2.0, and then
exploit any cryptographic flaws of the earlier version. TLS includes
two mechanisms to address this problem, both in the ClientKeyEx-
change message, so that a server can identify SSL-only clients.
For instance, TLS clients embed ver_max within pms, but SSL 2.0
clients do not.
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However, these mechanisms still do not suffice with the resump-
tion protocol, since the abbreviated handshake does not contain
the ClientKeyExchange message. Hence, resumption authentication
(Theorem 2) guarantees only that the new connection parameters
excluding ServerHello.version are correlated with the old session
parameters. Experimentally, we found that deployed server imple-
mentations of TLS are vulnerable to this version rollback attack
from TLS 1.0 to SSL 3.0 during resumption. However, we did not
find the more dangerous rollback from TLS 1.0 to SSL 2.0, partly
because the length of the session id parameter fortunately differs
between these two versions.

Our method also catches common errors in TLS implementa-
tions, such as not verifying server certificates, or not checking that
the received sequence number is correct. Such errors result in
counter-examples to our authentication queries.

On the other hand, it is worth pointing out that several well-
known attacks on TLS are outside the scope of our symbolic (and
computational) model. These include cryptanalyses on the underly-
ing cryptographic functions, traffic analyses, and padding attacks.

Previous Symbolic Analyses. In a long line of works, researchers
have used various techniques to verify models, and more recently,
implementations, of different versions of SSL and TLS. Here, we
describe only those most closely related to our work.

Mitchell et al. [1998] study a model of SSL 3.0 using the Murphi
tool. They use model-checking to perform a finite-state exploration
of a sequence of simple protocols with increasing complexity, in-
cluding a version of SSL 3.0 with both handshake and resumption
protocols, but limited to finite configurations consisting of, for ex-
ample, two clients and a server.

Paulson [1999] develops formal, machine-checked proofs for a
model of TLS 1.0 in Isabelle, with authentication and secrecy theo-
rems that, like ours, apply to more general configurations of clients
and servers. His model includes both handshake and resumption
but does not address version rollback issues within resumption.

He et al. [2005] apply logic-based proof techniques to the IEEE
802.11i protocol, and include a simple model of TLS as a subproto-
col. Using PCL, they prove agreement on all exchanged messages
and secrecy of the pre-master secret.

Ogata and Futatsugi [2005] show secrecy of the pre-master secret
and liveness properties for the handshake protocol with resumption
using the OTS/CafeOBJ tool.

Kamil and Lowe [2008] report on an analysis of a detailed strand
spaces model of the handshake and record protocols. They prove
authentication and secrecy theorems similar to ours, and also show
that the record protocol provides two authenticated streams and sat-
isfies session independence.

Jürjens [2006] verifies a Java implementation of the TLS hand-
shake protocol for secrecy and authentication properties. His anal-
ysis works on the control-flow graph and does not account for mul-
tiple versions or low-level message formats.

Chaki and Datta [2008] apply software model checking on Open-
SSL code to verify secrecy and authentication for configurations of
up to three servers and clients.

5. A COMPUTATIONAL VERIFIER FOR
PROTOCOL IMPLEMENTATIONS

This section describes our computational verification approach
and tools; Section 6 applies them to TLS. Compared with sym-
bolic models, computational models adopt a less optimistic ap-
proach to cryptography: rather than giving the adversary essentially
the same capabilities as ordinary protocol participants, they spec-
ify both minimal positive assumptions (guaranteeing, for instance,

that the correct decryption of an encrypted message yields the orig-
inal plaintext) and minimal negative assumptions (bounding, for
instance, the probability that a polynomial adversary may break a
particular usage of encryption).

5.1 CryptoVerif (Review)
The CryptoVerif verifier can prove the security of a given proto-
col under a set of security assumptions for its cryptographic primi-
tives, within a probabilistic polynomial-time (PPT) model of com-
putation. We briefly present the tool; we refer to Blanchet [2006],
Blanchet and Pointcheval [2006] for an explanation of CryptoVerif
syntax and semantics.

CryptoVerif takes as input a script, written in a variant of the
pi calculus with an explicit polynomial bound for every replicated
process. Thus, processes represent PPT Turing machines that ex-
change finite bitstrings through an adversary, modelled as an (un-
known) PPT machine. In the script, cryptographic assumptions are
introduced through type and function declarations, equations, in-
equations, and game-based equivalences. The equations and in-
equations are typically used to describe minimal positive assump-
tions (the functional correctness of the primitive), whilst the game-
based equivalences are used to state minimal negative assumptions.
Section 6 gives some examples.
Proofs, Games, and Indistinguishability. The input script can be
seen as an initial game, modelling the protocol, to which Cryp-
toVerif applies transformations, until a final game that satisfies tar-
get security conditions is reached—this proof technique is known
as game-hopping.

Each transformation between two consecutive games preserves
PPT indistinguishability, that is, the adversary cannot distinguish
the games before and after the transformation. Example transfor-
mations include the application of an equivalence stating the secu-
rity of a cryptographic primitive, and the semantics-preserving rear-
rangement of code, such as inlining and partial evaluation. Cryp-
toVerif runs either automatically or interactively, in which case it
receives guidance from the user for selecting transformations.
Process and Variable Instances. Processes in CryptoVerif can
be replicated polynomially in a given security parameter, enabling
multiple parallel executions. A special find command permits to
access the different variable instances of each process replica.
Target Security Properties. CryptoVerif can deal with authentica-
tion and secrecy properties, specified as follows.

Authentication is expressed using correspondences, much as in
our symbolic models. Correspondences typically assert that, if
some event is executed, then other events must also have been exe-
cuted, with matching parameters, at least with overwhelming prob-
ability; this last bit reflects the computational nature of the model.

Secrecy is expressed using indistinguishability between two con-
figurations. (It is often called strong secrecy in symbolic models, in
contrast with the weaker notion of syntactic secrecy.) CryptoVerif
has two notions of secrecy. The weaker notion (query secret1 in
CryptoVerif) states that the adversary cannot distinguish the value
of a variable in a specific instance from a random value; the stronger
notion (query secret) states that the adversary cannot distinguish
the sequence of all the values of variable instances from a sequence
of independent random values.

5.2 Compiling to CryptoVerif Scripts
We describe the design and implementation of a new model extrac-
tor that translates protocol implementations written in F# to Cryp-
toVerif scripts. The extractor takes three inputs: protocol modules
written in F#, such as the modules in our reference implementation,
a computational model of the cryptographic libraries expressed as
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CryptoVerif assumptions, and security goals for the protocol ex-
pressed as CryptoVerif queries. Given these inputs, it generates a
CryptoVerif script that can be verified either automatically or inter-
actively. In the rest of this section, we outline the various steps of
the translation.

Computational Models for Libraries. We first define models for
all the functions in the library modules, such as Net, Crypto, and
Prins. Our model of Net treats connections as public channels;
hence, calls to Net.send and Net.recv send and read messages from
a single public channel that is controlled by the attacker. Our model
of Crypto defines cryptographic primitives as uninterpreted func-
tions in CryptoVerif. For each primitive, we then add equations,
inequations, and equivalences to encode the specific cryptographic
notions we wish to use. Functions for generating fresh values, such
as mkNonce, are written using the CryptoVerif primitive new that
chooses a random bitstring uniformly from a type, such as the set of
all nonces. Our model of Prins maintains a private array of public-
private keypairs; it allows a polynomial number of such keypairs
but does not model key compromise. In contrast with Net and Prins,
which are generic, Crypto must be written specifically for the pro-
tocol at hand; the specific definitions used for TLS are described in
Section 6.

Code Transformations. The model extractor applies a series of
code transformations to generate a smaller, more specialized source
program. These transformations include aggressive inlining of non-
recursive functions, partial evaluation of functions and patterns,
and dead-code elimination. Data structures such as records are
translated to simpler forms such as tuples, and all type abbrevia-
tions are inlined. All functions that do not appear in the interfaces
are eliminated, and all modules are flattened into a single module
by suitably qualifying the names of functions, variables, and types.
This single module then consists of datatype definitions, function
definitions, and top-level code that evaluates expressions and binds
variables.

Algebraic Datatypes. For each algebraic datatype, the translation
produces a CryptoVerif type declaration with transparent construc-
tors, thereby reflecting our assumption that constructors are used
only for tagging data, not for hiding information. For instance, the
F# declaration type t = A of bytes yields a CryptoVerif type t and
a type constructor A that is declared to be invertible; hence it is
always possible to obtain the bitstring x from A(x).

Functions as Processes. For each function definition let f x = e,
the translation first transforms the body expression e in continu-
ation-passing style, into a sequence of imperative commands e’:
each line in e’ is either a function call or a pattern match. Each line
is then translated to CryptoVerif: function calls become processes
that call CryptoVerif function symbols; pattern matches become
let processes. Some function calls are specially translated: calls
to fork spawn parallel processes; calls to log yield primitive event
recording processes. Finally, the whole function definition is trans-
lated to a process of the form let f = in(callf, x);...; out(resultf, r) that
takes its arguments on channel callf and returns its result on channel
resultf. Since these channels are public, the opponent may call any
of the functions in the public interface, as oracles.

Top-level Process. Each variable binding let x = e in the source
code translates to a process context that binds x to the result of
evaluating e. The expression e is translated to a process, as ex-
pressions in function definitions, possibly spawning processes us-
ing fork. Hence, the top-level process that represents the full sys-
tem consists of bindings for all variables, parallel threads for all
spawned processes, and N replicas for each function process, where
N is a polynomial in the security parameter.

Verification. The full CryptoVerif script consists of the computa-
tional models of the libraries, the type definitions in the protocol
implementation, and the top-level process representing the oracle
interface provided by the implementation to the attacker. We then
write security goals as CryptoVerif queries for this process, and
proceed with verification.

Besides the scripts obtained from our reference TLS implemen-
tation (Section 6), our largest case-study so far, we have extracted
CryptoVerif scripts from the code of several sample protocols, in-
cluding the Otway-Rees protocol and a password-based authen-
tication protocol; we could verify both authentication properties,
expressed as non-injective correspondences between events, and
strong secrecy properties for keys and payloads. Although all our
scripts are currently automatically verified by CryptoVerif, manual
guidance may be required in general, in the form of advice.
Challenges (Future Work). We mention two challenges with script
extraction. First, as detailed in Section 3, libraries such as Prins rely
on private databases to store local state and cryptographic materi-
als for principals. This programming style is delicate to translate
to CryptoVerif, which does not support private channels. We are
considering models that combine local variable bindings (for data
writes) and find commands (for data lookups).

More theoretically, we would like to show the correctness of our
translation, with respect to a probabilistic, polynomial-time seman-
tics for F#. This would enable us to carry over the computational
properties verified by CryptoVerif to our source programs, in terms
of PPT adversaries with access to selected F# interfaces.

6. COMPUTATIONAL VERIFICATION
This section provides computational security properties for code

that implements two stages of TLS: the full record layer and the
ClientKeyExchange phase of the handshake stage, respectively.

6.1 Record protocol
In addition to our code for the record protocol (module Record in
Section 3), we write F# wrapper code that sets up a secure connec-
tion (module Connected). From these modules, we automatically
extract the computational model using the tool of Section 5. This
yields polynomially-replicated communicating sender and receiver
processes, wrapped up in a context that sets up a shared connection
including a master secret ms and random values cr and sr. We as-
sume that neither the client nor the server is corrupted hence these
values are not known to the attacker.

In order to obtain the final CryptoVerif script, we include Cryp-
toRecord.cv to the above processes; it contains a hand-written im-
plementation of module Crypto that embeds our cryptographic as-
sumptions described below.
Security Notions for PRF, MAC and Symmetric Encryption. We
present our assumptions for the security primitives of the record
protocol. (The full paper lists the corresponding CryptoVerif defi-
nitions.)
PRF. We specify security in the Random Oracle model [Bellare
and Rogaway, 1993], as an equivalence that replaces every call to
PRF by a table lookup, such that the first call generates a fresh ran-
dom value. Blanchet and Pointcheval [2006] use a similar equiva-
lence for proving the security of a signature scheme.
MAC. The message authentication code scheme has three func-
tions, mkgen, mac, and check for generating a mac key from a seed,
macing a message, and verifying a mac, respectively. We assume
unforgeability under chosen message attacks (UF-CMA), stated as
an equivalence that replaces every call to mac and check, so that
check performs instead a table lookup on any previously-generated
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macs. Blanchet [2006, Proposition 2] also relies on this equiva-
lence, and shows that it is indeed implied by UF-CMA.
SPRP. The symmetric encryption scheme has three functions kgen,
symenc, and symdec for generating a symmetric key from a seed,
encrypting a message, and decrypting a message, respectively. Since
the ciphersuites we consider use AES and DES, we model this
scheme as a block cipher, and assume the usual notion of super
pseudo-random permutation (SPRP) [Phan and Pointcheval, 2004],
entailing that encryption is a random permutation, at least for ran-
domly chosen keys. (The “super” qualifier indicates that the ad-
versary has also access to a decryption oracle.) We model SPRP
in CryptoVerif as an equivalence that replaces every call to encryp-
tion and decryption operations by lookups (via the CryptoVerif find
command) on a table that relates previous encryption and decryp-
tion queries with freshly generated random values.
Record Authentication. Relying on the same events Send and
Recv as in Section 4, we express our security property as a cor-
respondence query within CryptoRecord.cv. Let Sys be the script
composed of CryptoRecord.cv (embedding PRF, MAC, and SPRP
assumptions) and the translation of Connected and Record. Cryp-
toVerif automatically proves record authentication, through 8 game
transformations in less than a second.

THEOREM 4 (RECORD AUTHENTICATION). In any polyno-
mial run of Sys , with overwhelming probability, for any Recv event,
there is a Send event with opposite entities (client/server or server/-
client) and matching connection identifiers and records.

Record Secrecy. In order to check secrecy of the communicated
payloads, we extend Record with a new function definition

let send’ (id:ConnectionId) =
let payload = mkNonce() in send id payload

This function is translated to a CryptoVerif process that, instead
of inputting a payload from the adversary, generates and sends a
freshly generated payload. In order to prove secrecy of payload,
we exclude the recv function (which would otherwise act as an or-
acle) and obtain a variant Sys ′ of the system Sys of Theorem 4.
CryptoVerif verifies the secrecy of payload, through 26 game trans-
formations.

THEOREM 5 (RECORD SECRECY). In any polynomial run of
Sys ′, the sequence of sent payload values is indistinguishable from
a sequence of independent random values.

Attacks and Differences with the Symbolic Model. Symbolically,
it is possible to show secrecy not only for the record payloads, but
also for the used keys. Computationally, however, one can only
show key secrecy before they are actually used; this is the case for
the session keys of the record protocol and the pre-master secret of
the handshake protocol (Section 6.2).

Another difference can be seen in the following variant of the
record protocol, where instead of mac-then-encrypting, we only
encrypt the payload and keep the mac in the clear. In this case,
CryptoVerif fails to find a proof of Theorem 5, and with reason:
nothing in the equivalence of macs ensures that the maced payload
should be kept secret. Interestingly, this variant protocol remains
secure in the symbolic model, as the mac function (modelled as a
non-invertible hmacsha1 function) leaks nothing. This is another
evident illustration of the difference in abstraction levels between
symbolic and computational models.

The protocol model we verify here is more limited in comparison
to the symbolic one: we do not consider resumption, nor the com-
position of the record and handshake protocols. We do not model

server corruption, and we verify only a single established connec-
tion between an honest sender and an honest receiver (however, us-
ing this single connection, a polynomial number of messages can
be concurrently exchanged between the sender and receiver). These
restrictions stem from limitations in the current version of our com-
piler and of CryptoVerif. As future work, we foresee no difficulty
in reflecting computationally all the symbolic results of Section 4.

6.2 Handshake protocol
We consider the code for the first stage of the handshake protocol,
up to the sending of the ClientKeyExchange message, and show the
secrecy of the encrypted pms inside the ClientKeyExchange mes-
sage. For this proof, we disable all the code in Handshake module
for the subsequent stages. Similarly to the record protocol, we write
F# wrapper code in Certified that sets up a public/private keypair of
a trusted server. Using the tool of Section 5, we extract the polyno-
mially replicated processes from Certified and Handshake.
Security Notions for Asymmetric Encryption. We manually craft
CryptoHandshake.cv with our cryptographic declarations and as-
sumptions. We have functions skgen and pkgen for creating private
and public keys; we also have functions enc and dec to encrypt
and decrypt messages. (We assume a probabilistic scheme, so the
encryption function inputs a seed as well.)

We use a strong notion of security for asymmetric encryption,
namely indistinguishability against chosen-ciphertext attacks (IND-
CCA2). We use the standard equivalence from the CryptoVerif li-
braries, which replaces encrypted plaintexts with a message con-
sisting of only zeroes (of the appropriate length), and replaces de-
cryptions by table lookups.
Secrecy of the Pre-master Secret. As specified in TLS 1.0, the pre-
master secret is the concatenation of a two-byte constant TLS1p0
plus 46 bytes of random. Let Sys ′′ be the script composed of Cryp-
toHandshake.cv (embedding the IND-CCA2 assumption) and the
translation of Certified and Handshake (up to the sending of the
ClientKeyExchange message). CryptoVerif verifies the secrecy of
random, through 6 game transformations.

THEOREM 6 (PMS RANDOM SECRECY). In any polynomial
run of Sys ′′, the sequence of random values within pre-master se-
crets is indistinguishable from a sequence of independent random
values.

Attacks and Differences with Symbolic Model. Our secrecy prop-
erty is close to the symbolic notion of strong secrecy but is finer
than syntactic secrecy. For instance, symbolically, we can estab-
lish syntactic secrecy for the full pms with the embedded protocol
version constant, not just random. Even computationally, it may
be possible to prove computational secrecy of the whole pms, as
shown in independent ongoing work [Morrissey et al., 2008], if we
model asymmetric encryption using a weaker one-wayness prop-
erty that allows the adversary to recover some parts of pms.

We were unable to prove full handshake and resumption authen-
tication computationally, due to limitations of our verification tools.
We leave these as future work.

6.3 Previous Computational Analyses
There are many analyses of TLS in computational settings; we fo-
cus on the positive results, although we still mention important neg-
ative results.

Krawczyk [2001] shows that the mac-then-encrypt operation (as
used in the computational analysis of our record protocol) is safe
when the mac is UF-CMA and the encryption scheme is used in
CBC mode and is IND-CPA. Phan and Pointcheval [2004] describe
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notions of PRP and SPRP (which we model in CryptoVerif) and
their equivalences to standard semantic security and security against
lunchtime attacks.

More recently, Fouque et al. [2008] argue for the suitability of
the HMACSHA1 construction as a PRF as used in TLS (whereas
our model assumes a random oracle). Related to this, Gajek et al.
[2008] study randomness extraction from pre-master secret to mas-
ter secret in the standard model (something we do not address com-
putationally as we focus on the pre-master secret exchange and on
the record stages only).

Jonsson and B. S. Kaliski [2002] give a security reduction for
the security of TLS/SSL when instantiated with RSA-PKCS-1v1_5
(modelling the PRF as a random oracle). This contrasts with our
work in which the encryption primitive is not explicitly considered
but assumed to be IND-CCA2.

Padding attacks have been exploited for TLS both for asymmet-
ric encryption using PKCS #1 [Bleichenbacher, 1998] and for sym-
metric encryption in CBC mode [Yau et al., 2005], when the adver-
sary is given an oracle that says whether plaintexts are correctly
padded or not. In our model, we do not consider this oracle; further
we assume that an application encrypts only one block at a time.

Finally, Klima et al. [2003] use the version check in the Client-
KeyExchange to construct timing attacks over RSA-based sessions.
In our model we do not consider side channel attacks.
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